Publications by authors named "John M Allman"

We developed a novel method for mapping the location, surface area, thickness, and volume of frontoinsular cortex (FI) using structural and diffusion magnetic resonance imaging. FI lies in the ventral part of anterior insular cortex and is characterized by its distinctive population von Economo neurons (VENs). Functional neuroimaging studies have revealed its involvement in affective processing, and histopathology has implicated VEN loss in behavioral-variant frontotemporal dementia and chronic alcoholism; however, structural neuroimaging of FI has been relatively limited.

View Article and Find Full Text PDF

Life satisfaction is a component of subjective well-being that reflects a global judgement of the quality of life according to an individual's own needs and expectations. As a psychological construct, it has attracted attention due to its relationship to mental health, resilience to stress, and other factors. Neuroimaging studies have identified neurobiological correlates of life satisfaction; however, they are limited to functional connectivity and gray matter morphometry.

View Article and Find Full Text PDF

We mapped the connections of the insular von Economo neuron (VEN) area in ex vivo brains of a bonobo, an orangutan and two gorillas with high angular resolution diffusion MRI imaging acquired in 36 h imaging sessions for each brain. The apes died of natural causes without neurological disorders. The localization of the insular VEN area was based on cresyl violet-stained histological sections from each brain that were coregistered with structural and diffusion images from the same individuals.

View Article and Find Full Text PDF

The endocannabinoid system serves a critical role in homeostatic regulation through its influence on processes underlying appetite, pain, reward, and stress, and cannabis has long been used for the related modulatory effects it provides through tetrahydrocannabinol (THC). We investigated how THC exposure relates to tissue microstructure of the cerebral cortex and subcortical nuclei using computational modeling of diffusion magnetic resonance imaging data in a large cohort of young adults from the Human Connectome Project. We report strong associations between biospecimen-defined THC exposure and microstructure parameters in discrete gray matter brain areas, including frontoinsular cortex, ventromedial prefrontal cortex, and the lateral amygdala subfields, with independent effects in behavioral measures of memory performance, negative intrusive thinking, and paternal substance abuse.

View Article and Find Full Text PDF

Anomalies in the medial prefrontal cortex, anterior insulae, and large-scale brain networks associated with them have been proposed to underlie the pathophysiology of schizophrenia and major depressive disorder (MDD). In this study, we examined the connectivity of the medial prefrontal cortices and anterior insulae in 24 healthy controls, 24 patients with schizophrenia, and 24 patients with MDD early in illness with seed-based resting state functional magnetic resonance imaging analysis using Statistical Probability Mapping. As hypothesized, reduced connectivity was found between the medial prefrontal cortex and the dorsal anterior cingulate cortex and other nodes associated with directed effort in patients with schizophrenia compared to controls while patients with MDD had reduced connectivity between the medial prefrontal cortex and ventral prefrontal emotional encoding regions compared to controls.

View Article and Find Full Text PDF

Dense retinotopy data sets were obtained by microelectrode visual receptive field mapping in dorsal and lateral visual cortex of anesthetized owl monkeys. The cortex was then physically flatmounted and stained for myelin or cytochrome oxidase. Retinotopic mapping data were digitized, interpolated to a uniform grid, analyzed using the visual field sign technique-which locally distinguishes mirror image from nonmirror image visual field representations-and correlated with the myelin or cytochrome oxidase patterns.

View Article and Find Full Text PDF

The neuronal composition of the insula in primates displays a gradient, transitioning from granular neocortex in the posterior-dorsal insula to agranular neocortex in the anterior-ventral insula with an intermediate zone of dysgranularity. Additionally, apes and humans exhibit a distinctive subdomain in the agranular insula, the frontoinsular cortex (FI), defined by the presence of clusters of von Economo neurons (VENs). Studies in humans indicate that the ventral anterior insula, including agranular insular cortex and FI, is involved in social awareness, and that the posterodorsal insula, including granular and dysgranular cortices, produces an internal representation of the body’s homeostatic state.

View Article and Find Full Text PDF

Some promising genetic correlates of schizophrenia have emerged in recent years but none explain more than a small fraction of cases. The challenge of our time is to characterize the neuronal networks underlying schizophrenia and other neuropsychiatric illnesses. Early models of schizophrenia have been limited by the ability to readily evaluate large-scale networks in living patients.

View Article and Find Full Text PDF

The claustrum and the insula are closely juxtaposed in the brain of the prosimian primate, the gray mouse lemur (Microcebus murinus). Whether the claustrum has closer affinities with the cortex or the striatum has been debated for many decades. Our observation of histological sections from primate brains and genomic data in the mouse suggest former.

View Article and Find Full Text PDF

In human and nonhuman primates, the amygdala is known to play critical roles in emotional and social behavior. Anatomically, individual amygdaloid nuclei are connected with many neural systems that are either differentially expanded or conserved over the course of primate evolution. To address amygdala evolution in humans and our closest living relatives, the apes, we used design-based stereological methods to obtain neuron counts for the amygdala and each of four major amygdaloid nuclei (the lateral, basal, accessory basal, and central nuclei) in humans, all great ape species, lesser apes, and one monkey species.

View Article and Find Full Text PDF

We immunocytochemically identified microglia in fronto-insular (FI) and visual cortex (VC) in autopsy brains of well-phenotyped subjects with autism and matched controls, and stereologically quantified the microglial densities. Densities were determined blind to phenotype using an optical fractionator probe. In FI, individuals with autism had significantly more microglia compared to controls (p = 0.

View Article and Find Full Text PDF

Human anterior cingulate and frontoinsular cortices participate in healthy social-emotional processing. These regions feature 2 related layer 5 neuronal morphotypes, the von Economo neurons and fork cells. In this paper, we review the historical accounts of these neurons and provide a German-to-English translation of von Economo's seminal paper describing the neurons which have come to bear his name.

View Article and Find Full Text PDF

The von Economo neurons (VENs) are large bipolar neurons located in the frontoinsular cortex (FI) and limbic anterior (LA) area in great apes and humans but not in other primates. Our stereological counts of VENs in FI and LA show them to be more numerous in humans than in apes. In humans, small numbers of VENs appear the 36th week postconception, with numbers increasing during the first 8 months after birth.

View Article and Find Full Text PDF

Objectives: Von Economo neurons (VENs) are defined by their thin, elongated cell body and long dendrites projecting from apical and basal ends. These distinctive neurons are mostly present in anterior cingulate (ACC) and fronto-insular (FI) cortex, with particularly high densities in cetaceans, elephants, and hominoid primates (i.e.

View Article and Find Full Text PDF

The von Economo neurons (VENs) are large bipolar neurons located in frontoinsular (FI) and anterior cingulate cortex (ACC) in great apes and humans but not other primates. We stereologically counted the VENs in FI and the limbic anterior (LA) area of ACC and found them to be more numerous in humans than in apes. In humans, VENs first appear in small numbers in the 36th week postconception are rare at birth and increase in number during the first 8 months after birth.

View Article and Find Full Text PDF

The von Economo neurons (VENs) are large bipolar neurons located in frontoinsular (FI) and anterior cingulate cortex in great apes and humans, but not other primates. We performed stereological counts of the VENs in FI and LA (limbic anterior, a component of anterior cingulate cortex) in great apes and in humans. The VENs are more numerous in humans than in apes, although one gorilla approached the lower end of the human range.

View Article and Find Full Text PDF

The locus coeruleus (LC) is a dense cluster of neurons that projects axons throughout the neuroaxis and is located in the rostral pontine tegmentum extending from the level of the inferior colliculus to the motor nucleus of the trigeminal nerve. LC neurons are lost in the course of several neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. In this study we used Nissl staining and tyrosine hydroxylase (TH) immunoreactivity to compare the human LC with that of closely related primate species, including great and lesser apes, and macaque monkeys.

View Article and Find Full Text PDF

Von Economo neurons (VENs) are a type of large, layer V spindle-shaped neurons that were previously described in humans, great apes, elephants, and some large-brained cetaceans. Here we report the presence of Von Economo neurons in the anterior cingulate (ACC), anterior insular (AI), and frontopolar (FP) cortices of small odontocetes, including the bottlenose dolphin (Tursiops truncatus), the Risso's dolphin (Grampus griseus), and the beluga whale (Delphinapterus leucas). The total number and volume of VENs and the volume of neighboring layer V pyramidal neurons and layer VI fusiform neurons were obtained by using a design-based stereologic approach.

View Article and Find Full Text PDF

Von Economo neurons (VENs), previously found in humans, all of the great ape species, and four cetacean species, are also present in African and Indian elephants. The VENs in the elephant are primarily found in similar locations to those in the other species. They are most abundant in the frontoinsular cortex (area FI) and are also present at lower density in the anterior cingulate cortex.

View Article and Find Full Text PDF

Interpreting the evolution of neuronal types in the cerebral cortex of mammals requires information from a diversity of species. However, there is currently a paucity of data from the Xenarthra and Afrotheria, two major phylogenetic groups that diverged close to the base of the eutherian mammal adaptive radiation. In this study, we used immunohistochemistry to examine the distribution and morphology of neocortical neurons stained for nonphosphorylated neurofilament protein, calbindin, calretinin, parvalbumin, and neuropeptide Y in three xenarthran species-the giant anteater (Myrmecophaga tridactyla), the lesser anteater (Tamandua tetradactyla), and the two-toed sloth (Choloepus didactylus)-and two afrotherian species-the rock hyrax (Procavia capensis) and the black and rufous giant elephant shrew (Rhynchocyon petersi).

View Article and Find Full Text PDF

Von Economo neurons (VENs) are large spindle-shaped neurons localized to anterior cingulate cortex (ACC) and fronto-insular cortex (FI). VENs appear late in development in humans, are a recent phylogenetic specialization, and are selectively destroyed in frontotemporal dementia, a disease which profoundly disrupts social functioning and self-awareness. Agenesis of the corpus callosum (AgCC) is a congenital disorder that can have significant effects on social and emotional behaviors, including alexithymia, difficulty intuiting the emotional states of others, and deficits in self- and social-awareness that can impair humor, comprehension of non-literal or affective language, and social judgment.

View Article and Find Full Text PDF

Behavioral variant frontotemporal dementia (bvFTD) disrupts our most human social and emotional functions. Early in the disease, patients show focal anterior cingulate cortex (ACC) and orbital frontoinsula (FI) degeneration, accentuated in the right hemisphere. The ACC and FI, though sometimes considered ancient in phylogeny, feature a large bipolar projection neuron, the von Economo neuron (VEN), which is found only in humans, apes, and selected whales-all large-brained mammals with complex social structures.

View Article and Find Full Text PDF

Objective: Frontotemporal dementia (FTD) is a neurodegenerative disease that erodes uniquely human aspects of social behavior and emotion. The illness features a characteristic pattern of early injury to anterior cingulate and frontoinsular cortex. These regions, though often considered ancient in phylogeny, are the exclusive homes to the von Economo neuron (VEN), a large bipolar projection neuron found only in great apes and humans.

View Article and Find Full Text PDF

Humor is a hallmark of human discourse. People use it to relieve stress and to facilitate social bonding, as well as for pure enjoyment in the absence of any apparent adaptive value. Although recent studies have revealed that humor acts as an intrinsic reward, which explains why people actively seek to experience and create humor, few have addressed the cognitive aspects of humor.

View Article and Find Full Text PDF

We acquired magnetic resonance images of the brain of an adult African elephant, Loxodonta africana, in the axial and parasagittal planes and produced anatomically labeled images. We quantified the volume of the whole brain (3,886.7 cm3) and of the neocortical and cerebellar gray and white matter.

View Article and Find Full Text PDF