Sex chromosomes have evolved hundreds of times across the flowering plant tree of life; their recent origins in some members of this clade can shed light on the early consequences of suppressed recombination, a crucial step in sex chromosome evolution. Amborella trichopoda, the sole species of a lineage that is sister to all other extant flowering plants, is dioecious with a young ZW sex determination system. Here we present a haplotype-resolved genome assembly, including highly contiguous assemblies of the Z and W chromosomes.
View Article and Find Full Text PDFAncient whole-genome duplications are believed to facilitate novelty and adaptation by providing the raw fuel for new genes. However, it is unclear how recent whole-genome duplications may contribute to evolvability within recent polyploids. Hybridization accompanying some whole-genome duplications may combine divergent gene content among diploid species.
View Article and Find Full Text PDFCultivar Williams 82 has served as the reference genome for the soybean research community since 2008, but is known to have areas of genomic heterogeneity among different sub-lines. This work provides an updated assembly (version Wm82.a6) derived from a specific sub-line known as Wm82-ISU-01 (seeds available under USDA accession PI 704477).
View Article and Find Full Text PDFPeanut (Arachis hypogaea L.) is a globally important oil and food crop frequently grown in arid, semi-arid, or dryland environments. Improving drought tolerance is a key goal for peanut crop improvement efforts.
View Article and Find Full Text PDFPerennial grasses are important forage crops and emerging biomass crops and have the potential to be more sustainable grain crops. However, most perennial grass crops are difficult experimental subjects due to their large size, difficult genetics, and/or their recalcitrance to transformation. Thus, a tractable model perennial grass could be used to rapidly make discoveries that can be translated to perennial grass crops.
View Article and Find Full Text PDFGene functional descriptions offer a crucial line of evidence for candidate genes underlying trait variation. Conversely, plant responses to environmental cues represent important resources to decipher gene function and subsequently provide molecular targets for plant improvement through gene editing. However, biological roles of large proportions of genes across the plant phylogeny are poorly annotated.
View Article and Find Full Text PDFFinger millet is a key food security crop widely grown in eastern Africa, India and Nepal. Long considered a 'poor man's crop', finger millet has regained attention over the past decade for its climate resilience and the nutritional qualities of its grain. To bring finger millet breeding into the 21 century, here we present the assembly and annotation of a chromosome-scale reference genome.
View Article and Find Full Text PDFPeatlands are crucial sinks for atmospheric carbon but are critically threatened due to warming climates. Sphagnum (peat moss) species are keystone members of peatland communities where they actively engineer hyperacidic conditions, which improves their competitive advantage and accelerates ecosystem-level carbon sequestration. To dissect the molecular and physiological sources of this unique biology, we generated chromosome-scale genomes of two Sphagnum species: S.
View Article and Find Full Text PDFIn the North-Central United States, lowland ecotype switchgrass can increase yield by up to 50% compared with locally adapted but early flowering cultivars. However, lowland ecotypes are not winter tolerant. The mechanism for winter damage is unknown but previously has been associated with late flowering time.
View Article and Find Full Text PDFAsexual reproduction results in offspring that are genetically identical to the mother. Among apomictic plants (reproducing asexually through seeds) many require paternal genetic contribution for proper endosperm development (pseudogamous endosperm). We examined phenotypic diversity in seed traits using a diverse panel of sexual and apomictic accessions from the genus .
View Article and Find Full Text PDFThe "genomic shock" hypothesis posits that unusual challenges to genome integrity such as whole genome duplication may induce chaotic genome restructuring. Decades of research on polyploid genomes have revealed that this is often, but not always the case. While some polyploids show major chromosomal rearrangements and derepression of transposable elements in the immediate aftermath of whole genome duplication, others do not.
View Article and Find Full Text PDFAppropriate flowering time is a crucial adaptation impacting fitness in natural plant populations. Although the genetic basis of flowering variation has been extensively studied, its mechanisms in nonmodel organisms and its adaptive value in the field are still poorly understood. Here, we report new insights into the genetic basis of flowering time and its effect on fitness in Panicum hallii, a native perennial grass.
View Article and Find Full Text PDFThe development of multiple chromosome-scale reference genome sequences in many taxonomic groups has yielded a high-resolution view of the patterns and processes of molecular evolution. Nonetheless, leveraging information across multiple genomes remains a significant challenge in nearly all eukaryotic systems. These challenges range from studying the evolution of chromosome structure, to finding candidate genes for quantitative trait loci, to testing hypotheses about speciation and adaptation.
View Article and Find Full Text PDFLeaf fungal microbiomes can be fundamental drivers of host plant success, as they contain pathogens that devastate crop plants and taxa that enhance nutrient uptake, discourage herbivory, and antagonize pathogens. We measured leaf fungal diversity with amplicon sequencing across an entire growing season in a diversity panel of switchgrass (Panicum virgatum). We also sampled a replicated subset of genotypes across 3 additional sites to compare the importance of time, space, ecology, and genetics.
View Article and Find Full Text PDFSex chromosomes have evolved hundreds of independent times across eukaryotes. As genome sequencing, assembly, and scaffolding techniques rapidly improve, it is now feasible to build fully phased sex chromosome assemblies. Despite technological advances enabling phased assembly of whole chromosomes, there are currently no standards for representing sex chromosomes when publicly releasing a genome.
View Article and Find Full Text PDFSpecialized diterpenoid metabolites are important mediators of plant-environment interactions in monocot crops. To understand metabolite functions in plant environmental adaptation that ultimately can enable crop improvement strategies, a deeper knowledge of the underlying species-specific biosynthetic pathways is required. Here, we report the genomics-enabled discovery of five cytochrome P450 monooxygenases (CYP71Z25-CYP71Z29) that form previously unknown furanoditerpenoids in the monocot bioenergy crop Panicum virgatum (switchgrass).
View Article and Find Full Text PDFGenome-enabled biotechnologies have the potential to accelerate breeding efforts in long-lived perennial crop species. Despite the transformative potential of molecular tools in pecan and other outcrossing tree species, highly heterozygous genomes, significant presence-absence gene content variation, and histories of interspecific hybridization have constrained breeding efforts. To overcome these challenges, here, we present diploid genome assemblies and annotations of four outbred pecan genotypes, including a PacBio HiFi chromosome-scale assembly of both haplotypes of the 'Pawnee' cultivar.
View Article and Find Full Text PDFCamelina [Camelina sativa (L.) Crantz] is an oilseed crop in the Brassicaceae family that is currently being developed as a source of bioenergy and healthy fatty acids. To facilitate modern breeding efforts through marker-assisted selection and biotechnology, we evaluated genetic variation among a worldwide collection of 222 camelina accessions.
View Article and Find Full Text PDFCorymbia citriodora is a member of the predominantly Southern Hemisphere Myrtaceae family, which includes the eucalypts (Eucalyptus, Corymbia and Angophora; ~800 species). Corymbia is grown for timber, pulp and paper, and essential oils in Australia, South Africa, Asia, and Brazil, maintaining a high-growth rate under marginal conditions due to drought, poor-quality soil, and biotic stresses. To dissect the genetic basis of these desirable traits, we sequenced and assembled the 408 Mb genome of Corymbia citriodora, anchored into eleven chromosomes.
View Article and Find Full Text PDF