Unlabelled: Quantifying mechanically-induced changes in the tricuspid valve extracellular matrix (ECM) structural components, e.g. collagen fiber spread and distribution, is important as it determines the overall macro-scale tissue responses and subsequently its function/malfunction in physiological/pathophysiological states.
View Article and Find Full Text PDFFibrous structures are an integral and dynamic feature of soft biological tissues that are directly related to the tissues' condition and function. A greater understanding of mechanical tissue behavior can be gained through quantitative analyses of structure alone, as well as its integration into computational models of soft tissue function. Histology and other nonoptical techniques have traditionally dominated the field of tissue imaging, but they are limited by their invasiveness, inability to provide resolution on the micrometer scale, and dynamic information.
View Article and Find Full Text PDFResidual and physiological functional strains in soft tissues are known to play an important role in modulating organ stress distributions. Yet, no known comprehensive information on residual strains exist, or non-invasive techniques to quantify in-vivo deformations for the aortic valve (AV) leaflets. Herein we present a completely non-invasive approach for determining heterogeneous strains - both functional and residual - in semilunar valves and apply it to normal human AV leaflets.
View Article and Find Full Text PDFWe illustrate wide-field imaging of skin using a structured light (SL) approach that highlights the contrast from superficial tissue scattering. Setting the spatial frequency of the SL in a regime that limits the penetration depth effectively gates the image for photons that originate from the skin surface. Further, rendering the SL images in a color format provides an intuitive format for viewing skin pathologies.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
February 2016
Our group previously introduced Polarized Spatial Frequency Domain Imaging (PSFDI), a wide-field, reflectance imaging technique which we used to empirically map fiber direction in porcine pulmonary heart valve leaflets (PHVL) without optical clearing or physical sectioning of the sample. Presented is an extended analysis of our PSFDI results using an inverse Mueller matrix model of polarized light scattering that allows additional maps of fiber orientation distribution, along with instrumentation permitting increased imaging speed for dynamic PHVL fiber measurements. We imaged electrospun fiber phantoms with PSFDI, and then compared these measurements to SEM data collected for the same phantoms.
View Article and Find Full Text PDFThe measurement of soft tissue fiber orientation is fundamental to pathophysiology and biomechanical function in a multitude of biomedical applications. However, many existing techniques for quantifying fiber structure rely on transmitted light, limiting general applicability and often requiring tissue processing. Herein, we present a novel wide-field reflectance-based imaging modality, which combines polarized light imaging (PLI) and spatial frequency domain imaging (SFDI) to rapidly quantify preferred fiber orientation on soft collagenous tissues.
View Article and Find Full Text PDF