The importance of radical S-adenosyl-l-methionine (RS) enzymes in the maturation of ribosomally synthesized and post-translationally modified peptides (RiPPs) continues to expand, specifically for the RS-SPASM subfamily. We recently discovered an RS-SPASM enzyme that installs a carbon-carbon bond between the geminal methyls of valine residues, resulting in the formation of cyclopropylglycine (CPG). Here, we sought to define the family of cyclopropyl (CP) synthases because of the importance of cyclopropane scaffolds in pharmaceutical development.
View Article and Find Full Text PDFObjective: To investigate whether fear of failure (FOF) influences a clinician's perception of how confident and comfortable they are in their delivery of end-of-life (EOL) care.
Methods: Cross-sectional questionnaire study with recruitment of physicians and nurses across two large NHS hospital trusts in the UK and national UK professional networks. A total of 104 physicians and 101 specialist nurses across 20 hospital specialities provided data that were analysed using a two-step hierarchical regression.
Objective: To explore the emotional experience of physicians in acute settings when encountering end-of-life conversations and decision making.
Method: Thematic synthesis of qualitative studies. Medline, PsychInfo, PubMed, BNI and CIAHL were searched from 1985 to 2021 for studies published in English.
Peptide-derived natural products are a large class of bioactive molecules that often contain chemically challenging modifications. In the biosynthesis of ribosomally synthesized and posttranslationally modified peptides (RiPPs), radical-SAM (rSAM) enzymes have been shown to catalyze the formation of ether, thioether, and carbon-carbon bonds on the precursor peptide. The installation of these bonds typically establishes the skeleton of the mature RiPP.
View Article and Find Full Text PDFMycofactocin (MFT) is a ribosomally synthesized and post-translationally-modified redox cofactor found in pathogenic mycobacteria. While MFT biosynthetic proteins have been extensively characterized, the physiological conditions under which MFT biosynthesis is required are not well understood. To gain insights into the mechanisms of regulation of MFT expression in Mycobacterium smegmatis mc155, we investigated the DNA-binding and ligand-binding activities of the putative TetR-like transcription regulator, MftR.
View Article and Find Full Text PDFRadical S-adenosylmethionine (rSAM) enzymes are a large and diverse superfamily of enzymes, some of which are known to participate in the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs). Specifically, a subfamily of rSAM proteins with an elongated C-terminus known as a SPASM domain have become a fixation in the discovery of new RiPP natural products. Arguably, a structural study, a bioinformatic study, and a functional study built the foundation of the research for rSAM-SPASM-protein-modified RiPPs.
View Article and Find Full Text PDFBackground: Eptinezumab is a humanized monoclonal antibody that selectively binds calcitonin gene-related peptide and is indicated for the preventive treatment of migraine in adults. This analysis characterizes the immunogenic profile of eptinezumab using data from clinical trials of eptinezumab for migraine prevention.
Methods: Immunogenicity data were collected from five studies that included 2076 patients with episodic or chronic migraine treated with eptinezumab at dose levels ranging from 10 to 1000 mg, administered intravenously for up to 4 doses at 12-week intervals.
Covering: up to June 2020Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large group of natural products. A community-driven review in 2013 described the emerging commonalities in the biosynthesis of RiPPs and the opportunities they offered for bioengineering and genome mining. Since then, the field has seen tremendous advances in understanding of the mechanisms by which nature assembles these compounds, in engineering their biosynthetic machinery for a wide range of applications, and in the discovery of entirely new RiPP families using bioinformatic tools developed specifically for this compound class.
View Article and Find Full Text PDFEptinezumab is a humanized mAb that targets calcitonin gene-related peptide and is under regulatory review for the prevention of episodic and chronic migraine (EM, CM). It is important to determine whether exposures achieved with intravenous (IV) administration of eptinezumab achieve desired pharmacologic effects. Population pharmacokinetics, including dose- and exposure-response analyses, were performed using patient-level data from the eptinezumab clinical trial program with IV doses ranging from 10 to 1000 mg in pharmacokinetic analyses or 10 to 300 mg in phase 2/3 clinical studies in patients with EM or CM.
View Article and Find Full Text PDFElectron paramagnetic resonance (EPR) inversion recovery curves for vanadium catecholates and iron‑sulfur clusters were analyzed with three models: the sum of two exponentials, a stretched exponential, and a model-free distribution of exponentials (UPEN). For all data sets studied fits with a stretched exponential were statistically indistinguishable from the sum of two exponentials, and were significantly better than for single exponentials. UPEN provides insights into the structures of the distributions.
View Article and Find Full Text PDFPyrroloquinoline quinone is a prominent redox cofactor in many prokaryotes, produced from a ribosomally synthesized and post-translationally modified peptide PqqA via a pathway comprising four conserved proteins PqqB-E. These four proteins are now fairly well-characterized and span radical SAM activity (PqqE), aided by a peptide chaperone (PqqD), a dual hydroxylase (PqqB), and an eight-electron, eight-proton oxidase (PqqC). A full description of this pathway has been hampered by a lack of information regarding a protease/peptidase required for the excision of an early, cross-linked di-amino acid precursor to pyrroloquinoline quinone.
View Article and Find Full Text PDFMycofactocin (MFT) is a putative ribosomally synthesized and post-translationally modified (RiPP) redox cofactor. The biosynthesis of MFT is encoded by the gene cluster . While processing of the precursor peptide by MftB, MftC, and MftE has been shown to result in the formation of the small molecule 3-amino-5-[(-hydroxyphenyl)methyl]-4,4-dimethyl-2-pyrrolidinone (AHDP), no activity has been shown for the putative dehydrogenase MftD and the putative glycosyltransferase MftF.
View Article and Find Full Text PDFUnderstanding the biosynthesis of cofactors is fundamental to the life sciences, yet to date a few important pathways remain unresolved. One example is the redox cofactor pyrroloquinoline quinone (PQQ), which is critical for C1 metabolism in many microorganisms, a disproportionate number of which are opportunistic human pathogens. While the initial and final steps of PQQ biosynthesis, involving PqqD/E and PqqC, have been elucidated, the precise nature and order of the remaining transformations in the pathway are unknown.
View Article and Find Full Text PDFMycofactocin is a member of the rapidly growing class of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products. Although the mycofactocin biosynthetic pathway is widely distributed among Mycobacterial species, the structure, function, and biosynthesis of the pathway product remain unknown. This mini-review will discuss the current state of knowledge regarding the mycofactocin biosynthetic pathway.
View Article and Find Full Text PDFMigraine is a debilitating disease that affects almost 15% of the population worldwide and is the first cause of disability in people under 50 years of age, yet its etiology and pathophysiology remain incompletely understood. Recently, small molecules and therapeutic antibodies that block the calcitonin gene-related peptide (CGRP) signaling pathway have reduced migraine occurrence and aborted acute attacks of migraine in clinical trials and provided prevention in patients with episodic and chronic migraine. Heterogeneity is present within each diagnosis and patient's response to treatment, suggesting migraine as a final common pathway potentially activated by multiple mechanisms, e.
View Article and Find Full Text PDFMycofactocin is a putative redox cofactor and is classified as a ribosomally synthesized and post-translationally modified peptide (RiPP). Some RiPP natural products, including mycofactocin, rely on a radical S-adenosylmethionine (RS, SAM) protein to modify the precursor peptide. Mycofactocin maturase, MftC, is a unique RS protein that catalyzes the oxidative decarboxylation and C-C bond formation on the precursor peptide MftA.
View Article and Find Full Text PDFThe structure of the ribosomally synthesized and post-translationally modified peptide product mycofactocin is unknown. Recently, the first step in mycofactocin biosynthesis was shown to be catalyzed by MftC in two S-adenosylmethionine-dependent steps. In the first step, MftC catalyzes the oxidative decarboxylation of the MftA peptide to produce the styrene-containing intermediate MftA**, followed by a subsequent C-C bond formation to yield the lactam-containing MftA*.
View Article and Find Full Text PDFThe Radical SAM (RS) enzyme PqqE catalyzes the first step in the biosynthesis of the bacterial cofactor pyrroloquinoline quinone, forming a new carbon-carbon bond between two side chains within the ribosomally synthesized peptide substrate PqqA. In addition to the active site RS 4Fe-4S cluster, PqqE is predicted to have two auxiliary Fe-S clusters, like the other members of the SPASM domain family. Here we identify these sites and examine their structure using a combination of X-ray crystallography and Mössbauer and electron paramagnetic resonance (EPR) spectroscopies.
View Article and Find Full Text PDFRadical -adenosylmethionine (RS) enzymology has emerged as a major biochemical strategy for the homolytic cleavage of unactivated C-H bonds. At the same time, the post-translational modification of ribosomally synthesized peptides is a rapidly expanding area of investigation. We discuss the functional cross-section of these two disciplines, highlighting the recently uncovered importance of protein-protein interactions, especially between the peptide substrate and its chaperone, which functions either as a stand-alone protein or as an N-terminal fusion to the respective enzyme.
View Article and Find Full Text PDFPqqB is an enzyme involved in the biosynthesis of pyrroloquinoline quinone and a distal member of the metallo-β-lactamase (MBL) superfamily. PqqB lacks two residues in the conserved signature motif HxHxDH that makes up the key metal-chelating elements that can bind up to two metal ions at the active site of MBLs and other members of its superfamily. Here, we report crystal structures of PqqB bound to Mn, Mg, Cu, and Zn.
View Article and Find Full Text PDFThioesterase activity accounts for the majority of the activities in the hotdog-fold superfamily. The structures and mechanisms of catalysis for many hotdog enzymes have been elucidated by X-ray crystallography and kinetics to probe the specific substrate usage and cellular functions. However, structures of hotdog thioesterases in complexes with substrate analogues reported to date utilize ligands that either represent truncations of the substrate or include additional atoms to prevent hydrolysis.
View Article and Find Full Text PDFRibosomally synthesized and posttranslationally modified peptide (RiPP) pathways produce a diverse array of natural products. A subset of these pathways depends on radical -adenosylmethionine proteins to modify the RiPP-produced peptide. Mycofactocin biosynthesis is one example of an -adenosylmethionine protein-dependent RiPP pathway.
View Article and Find Full Text PDFBiosynthesis of the ribosomally synthesized and post-translationally modified peptide (RiPP), pyrroloquinoline quinone (PQQ), is initiated when the precursor peptide, PqqA, is recognized and bound by the RiPP precursor peptide recognition element (RRE), PqqD, for presentation to the first enzyme in the pathway, PqqE. Unlike other RiPP-producing, postribosomal peptide synthesis (PRPS) pathways in which the RRE is a component domain of the first enzyme, PqqD is predominantly a separate scaffolding protein that forms a ternary complex with the precursor peptide and first tailoring enzyme. As PqqD is a stable, independent RRE, this makes the PQQ pathway an ideal PRPS model system for probing RRE interactions using nuclear magnetic resonance (NMR).
View Article and Find Full Text PDF