Publications by authors named "John Largier"

The allometric trophic network (ATN) framework for modeling population dynamics has provided numerous insights into ecosystem functioning in recent years. Herein we extend ATN modeling of the intertidal ecosystem off central Chile to include empirical data on pelagic chlorophyll-a concentration. This intertidal community requires subsidy of primary productivity to support its rich ecosystem.

View Article and Find Full Text PDF

AbstractMass mortality events provide valuable insight into biological extremes and also ecological interactions more generally. The sea star wasting epidemic that began in 2013 catalyzed study of the microbiome, genetics, population dynamics, and community ecology of several high-profile species inhabiting the northeastern Pacific but exposed a dearth of information on the diversity, distributions, and impacts of sea star wasting for many lesser-known sea stars and a need for integration across scales. Here, we combine datasets from single-site to coast-wide studies, across time lines from weeks to decades, for 65 species.

View Article and Find Full Text PDF

Dispersive early life stages are common in nature. Although many dispersing organisms ("propagules") are passively moved by outside forces, some improve their chances of successful dispersal through weak movements that exploit the structure of the environment to great effect. The larvae of many coastal marine invertebrates, for instance, swim vertically through the water column to exploit depth-varying currents, food abundance, and predation risk.

View Article and Find Full Text PDF

Beginning in 2015, the United States Environmental Protection Agency's (EPA's) National Estuary Program (NEP) started a collaboration with partners in seven estuaries along the East Coast (Barnegat Bay; Casco Bay), West Coast (Santa Monica Bay; San Francisco Bay; Tillamook Bay), and the Gulf of Mexico (GOM) Coast (Tampa Bay; Mission-Aransas Estuary) of the United States to expand the use of autonomous monitoring of partial pressure of carbon dioxide (CO) and pH. Analysis of high-frequency (hourly to sub-hourly) coastal acidification data including CO, pH, temperature, salinity, and dissolved oxygen (DO) indicate that the sensors effectively captured key parameter measurements under challenging environmental conditions, allowing for an initial characterization of daily to seasonal trends in carbonate chemistry across a range of estuarine settings. Multi-year monitoring showed that across all water bodies temperature and CO covaried, suggesting that CO variability was governed, in part, by seasonal temperature changes with average CO being lower in cooler, winter months and higher in warmer, summer months.

View Article and Find Full Text PDF

The Ocean Climate Indicators Project, developed for the Greater Farallones National Marine Sanctuary (GFNMS), yielded the first set of physical and biological ocean climate indicators specifically developed for the north-central California coast and ocean region, which extends from Point Arena to Point Año Nuevo and includes the ocean shorelines of the San Francisco metropolitan area. This case study produced a series of physical and biological indicator categories through a best professional judgment (BPJ) process with an interdisciplinary group of over 50 regional research scientists and marine resource managers from a wide range of state and federal agencies, NGOs, and universities. A working group of research scientists and marine resource managers used this set of ocean climate indicators to develop the Ocean Climate Indicators Monitoring Inventory and Plan.

View Article and Find Full Text PDF

Bays in coastal upwelling regions are physically driven and biochemically fueled by their interaction with open coastal waters. Wind-driven flow over the shelf imposes a circulation in the bay, which is also influenced by local wind stress and thermal bay-ocean density differences. Three types of bays are recognized based on the degree of exposure to coastal currents and winds (wide-open bays, square bays, and elongated bays), and the characteristic circulation and stratification patterns of each type are described.

View Article and Find Full Text PDF
Article Synopsis
  • Between 2014-2016, severe marine heatwaves in the northeast Pacific caused significant ecological disruptions, including mass die-offs and harmful algal blooms, with less focus on how these heatwaves affected species distribution along the coast.
  • A study in northern California highlighted major changes in the geographic distribution of 67 southern marine species, including notable poleward range extensions and increased populations of certain species like owl limpets and volcano barnacles.
  • The findings suggest that extreme sea surface temperatures and altered ocean currents during heatwave events may contribute to long-term changes in coastal ecosystems, especially in regions where species are reaching their northern limits.
View Article and Find Full Text PDF

Rapidly developing coastal regions face consequences of land use and climate change including flooding and increased sediment, nutrient, and chemical runoff, but these forces may also enhance pathogen runoff, which threatens human, animal, and ecosystem health. Using the zoonotic parasite Toxoplasma gondii in California, USA as a model for coastal pathogen pollution, we examine the spatial distribution of parasite runoff and the impacts of precipitation and development on projected pathogen delivery to the ocean. Oocysts, the extremely hardy free-living environmental stage of T.

View Article and Find Full Text PDF

Most sedentary marine animals disperse from their place of origin during their initial life stages as larvae. The delivery of planktonic larvae back to coastal adult habitats after weeks or months of offshore development is commonly thought to be stochastic, resulting in large recruitment fluctuations and making predictive understanding of population dynamics difficult. Time series of invertebrate settlement on intertidal shores have been used to infer how various oceanographic processes deliver planktonic larvae ashore.

View Article and Find Full Text PDF

Predicting connectivity patterns in systems with fluid transport requires descriptions of the spatial distribution of propagules. In contrast to research on terrestrial seed dispersal, where much attention has focused on localized physical factors affecting dispersal, studies of oceanic propagule dispersal have often emphasized the role of large-scale factors. We link these two perspectives by exploring how propagule dispersal in the ocean is influenced by the "coastal boundary layer" (CBL), a region of reduced velocities near the shoreline that might substantially modify local-scale dispersal.

View Article and Find Full Text PDF

Over the past decade, evidence of abrupt latitudinal changes in the dynamics, structure and genetic variability of intertidal and subtidal benthic communities along central-northern Chile has been found consistently at 30-32°S. Changes in the advective and thermal environment in nearshore waters have been inferred from ecological patterns, since analyses of in situ physical data have thus far been missing. Here we analyze a unique set of shoreline temperature data, gathered over 4-10 years at 15 sites between 28-35°S, and combine it with satellite-derived winds and sea surface temperatures to investigate the latitudinal transition in nearshore oceanographic conditions suggested by recent ecological studies.

View Article and Find Full Text PDF

Gelatinous polymers including extracellular polymeric substances (EPSs) are fundamental to biophysical processes in aquatic habitats, including mediating aggregation processes and functioning as the matrix of biofilms. Yet insight into the impact of these sticky molecules on the environmental transmission of pathogens in the ocean is limited. We used the zoonotic parasite Toxoplasma gondii as a model to evaluate polymer-mediated mechanisms that promote transmission of terrestrially derived pathogens to marine fauna and humans.

View Article and Find Full Text PDF

Aquatic macroaggregates (flocs ≥ 0.5 mm) provide an important mechanism for vertical flux of nutrients and organic matter in aquatic ecosystems, yet their role in the transport and fate of zoonotic pathogens is largely unknown. Terrestrial pathogens that enter coastal waters through contaminated freshwater runoff may be especially prone to flocculation due to fluid dynamics and electrochemical changes that occur where fresh and marine waters mix.

View Article and Find Full Text PDF

The flux of terrestrially derived pathogens to coastal waters presents a significant health risk to marine wildlife, as well as to humans who utilize the nearshore for recreation and seafood harvest. Anthropogenic changes in natural habitats may result in increased transmission of zoonotic pathogens to coastal waters. The objective of our work was to evaluate how human-caused alterations of coastal landscapes in California affect the transport of Toxoplasma gondii to estuarine waters.

View Article and Find Full Text PDF

The ability of miniscule larvae to control their fate and replenish populations in dynamic marine environments has been a long-running topic of debate of central importance for managing resources and understanding the ecology and evolution of life in the sea. Larvae are considered to be highly susceptible to offshore transport in productive upwelling regions, thereby increasing dispersal, limiting onshore recruitment, and reducing the intensity of community interactions. We show that 45 species of nearshore crustaceans were not transported far offshore in a recruitment-limited region characterized by strong upwelling.

View Article and Find Full Text PDF

While reports on waterborne infections with Toxoplasma gondii are emerging worldwide, detection of this zoonotic parasite in water remains challenging. Lack of standardized and quantitative methods for detection of T. gondii oocysts in water also limits research on the transport and fate of this pathogen through aquatic habitats.

View Article and Find Full Text PDF

The physical properties that govern the waterborne transmission of Toxoplasma gondii oocysts from land to sea were evaluated and compared to the properties of carboxylated microspheres, which could serve as surrogates for T. gondii oocysts in transport and water treatment studies. The electrophoretic mobilities of T.

View Article and Find Full Text PDF

The surf zone is the unique environment where ocean meets land and a place of critical ecological, economic, and recreational importance. In the United States, this natural resource is increasingly off-limits to the public due to elevated concentrations of fecal indicator bacteria and other contaminants, the sources of which are often unknown. In this paper, we describe an approach for calculating mass budgets of pollutants in the surf zone from shoreline monitoring data.

View Article and Find Full Text PDF