Publications by authors named "John L. Hubbard"

Under the influence of an Ir(I) metal fragment, the methyl group of phenyl(methyl)ketene undergoes two C-H activations in reacting with internal alkynes, giving metallacycles 3 in 86-94% yield. Treatment of 3 with CO liberates 1,4-dien-3-ones 5 in 81-93% yield, along with CO complex 4. A possible mechanism for the very selective double C-H activation-alkyne coupling is discussed.

View Article and Find Full Text PDF

We describe the formation and properties of H(2)GaN(3) (1), which is a very simple and stable molecular source for chemical vapor deposition (CVD) of GaN heterostructures. Compound 1 and the perdeuterated analogue D(2)GaN(3) (2) are prepared by the LiGaH(4) and LiGaD(4) reduction of Br(2)GaN(3) (3), respectively. Compound 3 is obtained from the thermal decomposition of the crystalline adduct SiMe(3)N(3).

View Article and Find Full Text PDF

The formation of a novel Lewis acid-base complex between the silyl azide Si(CH(3))(3)N(3) and GaCl(3) having the formula (H(3)C)(3)SiN(3).GaCl(3)()()(1) is demonstrated. The X-ray crystal structure of 1 shows that the electron-donating site is the nitrogen atom directly bonded to the organometallic group.

View Article and Find Full Text PDF

The salts [(eta-C(5)Me(5))Ru(NO)(bipy)][OTf](2) (1[OTf](2)) and [(eta-C(5)Me(5))Ru(NO)(dppz)][OTf](2) (2[OTf](2)) are obtained from the treatment of (eta-C(5)Me(5))Ru(NO)(OTf)(2) with 2,2'-bipyridine (bipy) or dipyrido[3,2-a:2',3'-c]phenazine (dppz) (OTf = OSO(2)CF(3)). X-ray data for 1[OTf](2): monoclinic space group P2(1)/c, a = 11.553 (4) Å, b = 16.

View Article and Find Full Text PDF