Publications by authors named "John L Yates"

The EBNA1 protein of Epstein-Barr virus enables plasmids carrying oriP both to duplicate and to segregate efficiently in proliferating cells. EBNA1 recruits the origin recognition complex (ORC) to establish a replication origin at one element of oriP, DS (dyad symmetry); at another element, FR (family of repeats), EBNA1 binds to an array of sites from which it tethers plasmids to host chromosomes for mitotic stability. We report experiments leading to the conclusion that tethering by EBNA1 to host chromosomes is also needed within interphase nuclei in order for plasmids to be replicated efficiently from oriP.

View Article and Find Full Text PDF

Selection of initiation sites for DNA replication in eukaryotes is determined by the interaction between the origin recognition complex (ORC) and genomic DNA. In mammalian cells, this interaction appears to be regulated by Orc1, the only ORC subunit that contains a bromo-adjacent homology (BAH) domain. Since BAH domains mediate protein-protein interactions, the human Orc1 BAH domain was mutated, and the mutant proteins expressed in human cells to determine their affects on ORC function.

View Article and Find Full Text PDF

The Epstein-Barr virus (EBV) nuclear antigen (EBNA)1 contains a glycine-alanine repeat (GAr) domain that appears to protect the antigen from proteasomal breakdown and, as measured in cytotoxicity assays, from major histocompatibility complex (MHC) class I-restricted presentation to CD8+ T cells. This led to the concept of EBNA1 as an immunologically silent protein that although unique in being expressed in all EBV malignancies, could not be exploited as a CD8 target. Here, using CD8+ T cell clones to native EBNA1 epitopes upstream and downstream of the GAr domain and assaying recognition by interferon gamma release, we show that the EBNA1 naturally expressed in EBV-transformed lymphoblastoid cell lines (LCLs) is in fact presented to CD8+ T cells via a proteasome/peptide transporter-dependent pathway.

View Article and Find Full Text PDF

Due to their low frequency, CD4 T-cell responses to Epstein-Barr virus (EBV) lytic antigens are, so far, poorly characterized. Human peptide major histocompatibility complex (MHC) class II multimers provide a means to detect and characterize such rare T cells. Along a screening of T-cell responses to lytic or latent EBV antigens within peripheral blood leukocyte (PBL)- or synovial-derived CD4 T-cell lines, we identified an human leukocyte antigen-DR*0401 (HLA-DR*0401)-restricted epitope derived from BHRF1 (BamHI fragment H rightward open reading frame 1), a viral protein produced during the early stages of the lytic cycle.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) encodes multiple latency programs: a growth-transforming program (type III) latency program and restricted-latency (types I and II) programs. During type III latency, EBV expresses six nuclear antigens, all of which are encoded by a single complex transcriptional unit driven by two linked promoters, Cp and Wp, while restricted viral latency is characterized by the expression of a single nuclear antigen, EBNA1, whose expression is driven from a distinct transcription unit under the control of the Qp promoter. EBV infection of the 293 epithelial cell line frequently leads to the establishment of a type I/II latent infection.

View Article and Find Full Text PDF