Nuclear speckles are subcellular structures originally characterized by punctate immunofluorescence staining of the monoclonal antibody SC35, which recognizes an epitope on SRRM2 (serine/arginine repetitive matrix protein 2) and Sfrs2, a member of the SR (serine/arginine-rich) family of splicing factors. Galectin-3 co-localizes with SC35 in nuclear speckles, which represent one group of nuclear bodies that include the nucleolus, Cajal bodies and gems, paraspeckles, etc. Although they appear to have well-delineated physical boundaries, these nuclear bodies are not membrane-bound structures but represent macromolecular assemblies arising from a phenomenon called liquid-liquid phase separation.
View Article and Find Full Text PDFFractionation of HeLa cell nuclear extracts by glycerol gradient centrifugation separates endogenous uracil-rich small nuclear ribonucleoprotein complexes (U snRNP) into numerous particles sedimenting from 7S to greater than 60S. Complexes sedimenting at 10S contain a single U snRNP (U1 snRNP) and galectin-3. Addition of antibodies specific for galectin-3 to fractions containing these 10S complexes coprecipitates U1 snRNP, indicating that a fraction of the U1 snRNP is associated with this galectin.
View Article and Find Full Text PDFClassic depletion-reconstitution experiments indicate that galectin-3 is a required splicing factor in nuclear extracts. The mechanism of incorporation of galectin-3 into the splicing pathway is addressed in this paper. Sedimentation of HeLa cell nuclear extracts on 12%-32% glycerol gradients yields fractions enriched in an endogenous ~10S particle that contains galectin-3 and U1 snRNP.
View Article and Find Full Text PDFCancer cells can have characteristic carbohydrate binding properties. Previously, it was shown that a highly metastatic melanoma cell line B16F10 bound to galacto-side-functionalized nanoparticles much stronger than the corresponding less metastatic B16F1 cells. To better understand the carbohydrate binding properties of cancer cells, herein, we report the isolation and characterization of endogenous galactose binding proteins from B16F10 cells using magnetic glyconanoparticles.
View Article and Find Full Text PDFIn previous studies, we reported that fractionation of HeLa cell nuclear extracts on glycerol gradients revealed an endogenous ∼10S particle that contained galectin-3 and U1 snRNP and this particle was sufficient to load the galectin polypeptide onto a pre-mRNA substrate. We now document that this interaction between the galectin-3-U1 snRNP particle and the pre-mRNA results in a productive spliceosomal complex, leading to intermediates and products of the splicing reaction. Nuclear extracts were depleted of U1 snRNP with a concomitant loss of splicing activity.
View Article and Find Full Text PDFA large number of observations on the nuclear versus cytoplasmic distribution of galectin-3 have been reported, correlating the presence or absence of the protein in a particular compartment of the cell to various parameters such as source of the cells under study, specific cell type, culture conditions, proliferation status of the cell/culture, or neoplastic transformation. In fact, galectin-3 exhibits the phenomenon of nucleocytoplasmic shuttling, defined as the repeated bidirectional movement of a protein across the nuclear pore complex. Nevertheless, the finding that galectin-3 can show a predominantly nuclear localization under one set of conditions and a prominent cytoplasmic localization under other conditions suggests specific and regulated mechanisms of balance between cytoplasmic anchorage, nuclear import, nuclear retention, and nuclear export.
View Article and Find Full Text PDFSeveral lines of evidence have been accumulated to indicate that galectin-1 and galectin-3 are two of the many proteins involved in nuclear splicing of pre-mRNA. First, nuclear extracts, capable of carrying out splicing of pre-mRNA in a cell-free assay, contain both of the galectins. Second, depletion of the galectins from nuclear extracts, using either lactose affinity chromatography or immunoadsorption with antibodies, results in concomitant loss of splicing activity.
View Article and Find Full Text PDFWhile obesity is associated with increased need for total hip arthroplasty (THA), the relationship between body mass index (BMI) and operative duration is unknown. We reviewed a series of 425 primary THAs implanted by one surgeon from 2004 to 2010. Patients were grouped by BMI based on the World Health Organization's categorization.
View Article and Find Full Text PDFAlthough members of the serine (S)- and arginine (R)-rich splicing factor family (SR proteins) were initially purified on the basis of their splicing activity in the nucleus, there is recent documentation that they exhibit carbohydrate-binding activity at the cell surface. In contrast, galectins were isolated on the basis of their saccharide-binding activity and cell surface localization. Surprisingly, however, two members (galectin-1 and galectin-3) can be found in association with nuclear ribonucleoprotein complexes including the spliceosome and, using a cell-free assay, have been shown to be required splicing factors.
View Article and Find Full Text PDFThis review summarizes selected studies on galectin-3 (Gal3) as an example of the dynamic behavior of a carbohydrate-binding protein in the cytoplasm and nucleus of cells. Within the 15-member galectin family of proteins, Gal3 (M(r) approximately 30,000) is the sole representative of the chimera subclass in which a proline- and glycine-rich NH(2)-terminal domain is fused onto a COOH-terminal carbohydrate recognition domain responsible for binding galactose-containing glycoconjugates. The protein shuttles between the cytoplasm and nucleus on the basis of targeting signals that are recognized by importin(s) for nuclear localization and exportin-1 (CRM1) for nuclear export.
View Article and Find Full Text PDFPreviously, we showed that galectin-1 and galectin-3 are redundant pre-mRNA splicing factors associated with the spliceosome throughout the splicing pathway. Here we present evidence for the association of galectin-3 with snRNPs outside of the spliceosome (i.e.
View Article and Find Full Text PDFArch Biochem Biophys
October 2008
Galectin-1 (Gal1) and galectin-3 (Gal3) are two members of a family of carbohydrate-binding proteins that are found in the nucleus and that participate in pre-mRNA splicing assayed in a cell-free system. When nuclear extracts (NE) of HeLa cells were subjected to adsorption on a fusion protein containing glutathione S-transferase (GST) and Gal3, the general transcription factor II-I (TFII-I) was identified by mass spectrometry as one of the polypeptides specifically bound. Lactose and other saccharide ligands of the galectins inhibited GST-Gal3 pull-down of TFII-I while non-binding carbohydrates failed to yield the same effect.
View Article and Find Full Text PDFPrevious experiments had established that galectin-3 (Gal3) is a factor involved in cell-free splicing of pre-mRNA. Addition of monoclonal antibody NCL-GAL3, whose epitope maps to the NH2-terminal 14 amino acids of Gal3, to a splicing-competent nuclear extract inhibited the splicing reaction. In contrast, monoclonal antibody anti-Mac-2, whose epitope maps to residues 48-100 containing multiple repeats of a 9-residue motif PGAYPGXXX, had no effect on splicing.
View Article and Find Full Text PDFActa Histochem
July 2007
The goal of this article is to provide a comprehensive catalog of those proteins documented to exhibit dual localization, being found in both the extracellular compartment (cell surface and extracellular medium) as well as the intracellular compartment (cytosol and nucleus). A large subset of these proteins that show dual localization is found both in the nucleus and outside of cells. Proteins destined to be secreted out of the cell or to be expressed at the cell surface usually enter the endomembrane pathway on the basis of a signal sequence that targets them into the endoplasmic reticulum.
View Article and Find Full Text PDFNucleic Acids Res
December 2006
We have shown that galectin-1 and galectin-3 are functionally redundant splicing factors. Now we provide evidence that both galectins are directly associated with spliceosomes by analyzing RNAs and proteins of complexes immunoprecipitated by galectin-specific antisera. Both galectin antisera co-precipitated splicing substrate, splicing intermediates and products in active spliceosomes.
View Article and Find Full Text PDFGalectin-3, a factor involved in the splicing of pre-mRNA, shuttles between the nucleus and the cytoplasm. We have engineered a vector that expresses the fusion protein containing the following: (a) green fluorescent protein as a reporter of localization, (b) bacterial maltose-binding protein to increase the size of the reporter polypeptide, and (c) galectin-3, whose sequence we wished to dissect in search of amino acid residues vital for nuclear localization. In mouse 3T3 fibroblasts transfected with this expression construct, the full-length galectin-3 (residues 1-263) fusion protein was localized predominantly in the nucleus.
View Article and Find Full Text PDFGalectin-3, a factor involved in the splicing of pre-mRNA, shuttles between the nucleus and the cytoplasm. Previous studies have shown that incubation of fibroblasts with leptomycin B resulted in the accumulation of galectin-3 in the nucleus, suggesting that the export of galectin-3 from the nucleus may be mediated by the CRM1 receptor. A candidate nuclear export signal fitting the consensus sequence recognized by CRM1 can be found between residues 240 and 255 of the murine galectin-3 sequence.
View Article and Find Full Text PDFThe microfilament network of cultured Glycine max cells (SB-1 line), and protoplasts was visualized with rhodamine-phalloidin under conditions that lysed the protoplast and changed the cell shape. The whole cell had the typical microfilament distribution of a "cage" around the nucleus, from which the large subcortical cables and transvacuolar strands radiated towards the cortex until it reached the cortical microfilament network. Upon cell wall removal, the network conserved its compartmentalization.
View Article and Find Full Text PDFThis review summarizes studies on lectins that have been documented to be in the cytoplasm and nucleus of cells. Of these intracellular lectins, the most extensively studied are members of the galectin family. Galectin-1 and galectin-3 have been identified as pre-mRNA splicing factors in the nucleus, in conjunction with their interacting ligand, Gemin4.
View Article and Find Full Text PDFNuclear extracts (NE), capable of carrying out splicing of pre-mRNA, contain galectin-1 and galectin-3. NE depleted of galectins-1 and -3 concomitantly lose their splicing activity. The activity of the galectin-depleted extract can be reconstituted by the addition of either galectin-1 or galectin-3.
View Article and Find Full Text PDFMany galectin family members are detected primarily intracellularly in most of the systems studied, although certain members can be found both inside and outside of cells. Specific functions that are consistent with their intracellular localization have now been documented for some of the galectins. Galectin-1 and -3 have been identified as redundant pre-mRNA splicing factors.
View Article and Find Full Text PDFIn previous studies, we documented that galectin-3 (M(r) approximately 30,000) is a pre-mRNA splicing factor. Recently, galectin-3 was identified as a component of a nuclear and cytoplasmic complex, the survival of motor neuron complex, through its interaction with Gemin4. To test the possibility that galectin-3 may shuttle between the nucleus and the cytoplasm, human fibroblasts (LG-1) were fused with mouse fibroblasts (3T3).
View Article and Find Full Text PDF