In previous studies, we have demonstrated that the interaction of ryanoids with the sarcoplasmic reticulum Ca(2+)-release channel [ryanodine receptor (RyR)] incorporated into planar lipid bilayers reduced the effectiveness of tetraethylammonium (TEA(+)) as a blocker of K(+) translocation (J Gen Physiol 117: 385-393, 2001). In the current study, we investigated both the effect of TEA(+) on [(3)H]ryanodine binding and the actions of this impermeant cation on the interaction of the reversible ryanoid 21-amino-9alpha-hydroxyryanodine with individual, voltage-clamped RyR channels. A dose-dependent inhibition of [(3)H]ryanodine binding was observed in the presence of TEA(+), suggesting that the cation and alkaloid compete for access to a common site of interaction.
View Article and Find Full Text PDFWe have investigated the influence of transmembrane holding potential on the kinetics of interaction of a cationic ryanoid, 8beta-amino-9alpha-hydroxyryanodine, with individual ryanodine receptor (RyR) channels and on the functional consequences of this interaction. In agreement with previous studies involving cationic, neutral, and anionic ryanoids, both rates of association and dissociation of the ligand are sensitive to transmembrane potential. A voltage-sensitive equilibrium between high- and low-affinity forms of the receptor underlies alterations in rates of association and dissociation of the ryanoid.
View Article and Find Full Text PDFBackground: We have investigated the usefulness of a model of cardiac development in a large mammal, sheep, for studies of engraftment of human stem cells in the heart.
Methods And Results: Adult and fetal human mesenchymal stem cells were injected intraperitoneally into sheep fetuses in utero. Hearts at late fetal development were analyzed for engraftment of human cells.
In this and an accompanying report we describe two steps, single-channel imaging and channel immobilization, necessary for using optical imaging to analyze the function of ryanodine receptor (RyR) channels reconstituted in lipid bilayers. An optical bilayer system capable of laser scanning confocal imaging of fluo-3 fluorescence due to Ca2+ flux through single RyR2 channels and simultaneous recording of single channel currents was developed. A voltage command protocol was devised in which the amplitude, time course, shape, and hence the quantity of Ca2+ flux through a single RyR2 channel is controlled solely by the voltage imposed across the bilayer.
View Article and Find Full Text PDFWe have investigated the interactions of a novel anionic ryanoid, 10-O-succinoylryanodol, with individual mammalian cardiac muscle ryanodine receptor channels under voltage clamp conditions. As is the case for all ryanoids so far examined, the interaction of 10-O-succinoylryanodol with an individual RyR channel produces profound alterations in both channel gating and rates of ion translocation. In the continued presence of the ryanoid the channel fluctuates between periods of normal and modified gating, indicating a reversible interaction of the ligand with its receptor.
View Article and Find Full Text PDFThe interaction of ryanodine with the ryanodine receptor (RyR) produces profound changes in channel function. Open probability increases dramatically and conductance is reduced. In this report we describe differences in the properties of reduced conductance states produced by the interaction of ryanodine derivatives with RyR channels.
View Article and Find Full Text PDF