The detection of brain metastases (BM) in their early stages could have a positive impact on the outcome of cancer patients. The authors previously developed a framework for detecting small BM (with diameters of <15 mm) in T1-weighted contrast-enhanced 3D magnetic resonance images (T1c). This study aimed to advance the framework with a noisy-student-based self-training strategy to use a large corpus of unlabeled T1c data.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
October 2020
Brain Metastases (BM) complicate 20-40% of cancer cases. BM lesions can present as punctate (1 mm) foci, requiring high-precision Magnetic Resonance Imaging (MRI) in order to prevent inadequate or delayed BM treatment. However, BM lesion detection remains challenging partly due to their structural similarities to normal structures (e.
View Article and Find Full Text PDFPurpose To evaluate the performance of an artificial intelligence (AI) tool using a deep learning algorithm for detecting hemorrhage, mass effect, or hydrocephalus (HMH) at non-contrast material-enhanced head computed tomographic (CT) examinations and to determine algorithm performance for detection of suspected acute infarct (SAI). Materials and Methods This HIPAA-compliant retrospective study was completed after institutional review board approval. A training and validation dataset of noncontrast-enhanced head CT examinations that comprised 100 examinations of HMH, 22 of SAI, and 124 of noncritical findings was obtained resulting in 2583 representative images.
View Article and Find Full Text PDF