Publications by authors named "John L NEUMEYER"

The dopamine D agonist MCL-524 is selective for the D receptor in the high-affinity state (D), and, therefore, the PET analogue, [F]MCL-524, may facilitate the elucidation of the role of D in disorders such as schizophrenia. However, the previously reported synthesis of [F]MCL-524 proved difficult to replicate and was lacking experimental details. We therefore developed a new synthesis of [F]MCL-524 using a "non-anhydrous, minimally basic" (NAMB) approach.

View Article and Find Full Text PDF

The dopamine D receptor exists in two different states, D and D; the former is the functional form of the D receptor and associates with intracellular G-proteins. The D agonist [H]MCL-536 has high affinity for the D receptor ( 0.8 nM) and potently displaces the binding of (-(-)---propylnorapomorphine (NPA; 0.

View Article and Find Full Text PDF

A series of novel aporphine derivatives were synthesized for initial screening at the 5-HT receptor subtypes. Among them, Compounds 11a and 11b were identified as potent 5-HT hit ligands with high selectivity over other 5-HT receptor subtypes. Molecular docking study revealed that compounds 11a and 11b formed two key interactions with the binding site of 5-HT receptor, including a salt-bridge to D3.

View Article and Find Full Text PDF

Increases in the D2 receptor high affinity state are associated with certain neurological disorders. We synthesized and characterized the high-affinity D2high ligand [H]MCL-536 in competition binding against the D2/3 agonist R-(-)- N- n-propylnorapomorphine (NPA) and the D2/3 antagonist raclopride. The total binding of [H]MCL-536 (minus that in the presence of 100 nM NPA) was measured by saturation binding in CHO cells expressing human D2long; the data yielded separable, nonsaturable nonspecific, and saturable specific components.

View Article and Find Full Text PDF

Aporphines are attractive candidates for imaging D2 receptor function because, as agonists rather than antagonists, they are selective for the receptor in the high affinity state. In contrast, D2 antagonists do not distinguish between the high and low affinity states, and in vitro data suggests that this distinction may be important in studying diseases characterized by D2 dysregulation, such as schizophrenia and Parkinson's disease. Accordingly, MCL-536 (R-(-)-N-n-propyl-2-(3-[(18)F]fluoropropanoxy-11-hydroxynoraporphine) was selected for labeling with (18)F based on in vitro data obtained for the non-radioactive ((19)F) compound.

View Article and Find Full Text PDF

We previously reported that the κ agonists with mixed μ activity could attenuate heroin self-administration with less potential to develop tolerance. The present study further investigated the effects of (-)-3-N-Ethylamino-thiazolo[5,4-b]-N-cyclopropylmethylmorphinan hydrochloride (ATPM-ET), a κ agonist and μ agonist/antagonist, on the acquisition and reinstatement of morphine-induced conditioned place preference (CPP), heroin self-administration and heroin-primed reinstatement of drug-seeking behavior. We found that ATPM-ET produced a longer duration of potent antinociceptive effects with less side effect of sedation.

View Article and Find Full Text PDF

Unlabelled: PET has been used to examine changes in neurotransmitter concentrations in the living brain. Pioneering PET studies on the dopamine system have used D2 and D3 receptor (D2/D3) antagonists such as (11)C-raclopride. However, more recently developed agonist radioligands have shown enhanced sensitivity to endogenous dopamine.

View Article and Find Full Text PDF

A series of levo- and dextromorphinan pairs have been synthesized and evaluated for their affinities to the mu, kappa, and delta opioid receptors, the N-methyl-D-aspartate (NMDA) channel, and sigma 1 and 2 receptors. It was found that levo isomers tended to have higher affinities at the opioid receptors and moderate to high affinities to the NMDA and sigma receptors, while dextro isomers tended to have lower affinities to the opioid receptors but comparatively higher affinities to the NMDA and sigma receptors. This series of compounds have interesting and complex pharmacological profiles, and merit further investigation as potential therapies for drug abuse treatment.

View Article and Find Full Text PDF

Previous studies with aminothiazolomorphinans suggested that this class of opioid ligands may be useful as a potential pharmacotherapeutic to decrease drug abuse. Novel aminothiazole derivatives of cyclorphan were prepared to evaluate a series of aminothiazolomorphinans with varying pharmacological properties at the κ opioid receptor (KOR) and μ opioid receptor (MOR). This study was focused on exploring the regioisomeric analogs with the aminothiazole on the C-ring of the morphinan skeleton.

View Article and Find Full Text PDF

A series of 3-benzylamino-3-desoxymorphinan (I) and 3-benzylamino-3-desoxymorphine (II) derivatives were synthesized and evaluated for their binding affinities, and functional activity data are presented at MOR, KOR, and DOR. Some of these ligands were found to have high binding affinity at MOR and KOR and displayed increased selectivity at MOR over KOR and DOR compared to butorphan or cyclorphan. The most selective compound, 3-(3'-hydroxybenzyl)amino-17-methylmorphinan (4g) (24-fold MOR to KOR and 1700-fold MOR to DOR) also showed high binding affinity (0.

View Article and Find Full Text PDF

The 2-fluoroalkoxy substituted catechol-aporphines 6, 8a-f and 11-monohydroxyaporphines 11a-e were synthesized and found to have high in vitro affinity and selectivity for the dopamine D(2) receptors. The catechol aporphines, 8b and 8d, and the monohydroxy aporphines, 11a-d, were identified as candidates for development as potential PET ligands.

View Article and Find Full Text PDF

A novel series of homo- and heterodimeric ligands containing κ/μ agonist and μ agonist/antagonist pharmacophores joined by a 10-carbon ester linker chain were synthesized and evaluated for their in vitro binding affinity at κ, μ, and δ opioid receptors, and their functional activities were determined at κ and μ receptors in [(35)S]GTPγS functional assays. Most of these compounds had high binding affinity at μ and κ receptors (K(i) values less than 1nM). Compound 15b, which contains butorphan (1) at one end of linking chain and butorphanol (5) at the other end, was the most potent ligand in this series with binding affinity K(i) values of 0.

View Article and Find Full Text PDF

A series of N-substituted and N'-substituted aminothiazole-derived morphinans (5) were synthesized for expanding the structure-activity relationships of aminothiazolo-morphinans. Although their affinities were somewhat lower than their prototype aminothiazolo-N-cyclopropylmorphinan (3), 3-aminothiazole derivatives of cyclorphan (1) containing a primary amino group displayed high affinity and selectivity at the κ and μ opioid receptors. [(35)S]GTPγS binding assays showed that the aminothiazolomorphinans were κ agonists with mixed agonist and antagonist activity at the μ opioid receptor.

View Article and Find Full Text PDF

Bifunctional ligands containing an ester linkage between morphine and the δ-selective pharmacophore Dmt-Tic were synthesized, and their binding affinity and functional bioactivity at the μ, δ and κ opioid receptors determined. Bifunctional ligands containing or not a spacer of β-alanine between the two pharmacophores lose the μ agonism deriving from morphine becoming partial μ agonists 4 or μ antagonists 5. Partial κ agonism is evidenced only for compound 4.

View Article and Find Full Text PDF

Aim: to investigate the effects of ATPM-ET [(-)-3-N-Ethylaminothiazolo [5,4-b]-N-cyclopropylmethylmorphinan hydrochloride] on physical dependence and behavioral sensitization to morphine in mice.

Methods: the pharmacological profile of ATPM-ET was characterized using competitive binding and GTPγS binding assays. We then examined the antinociceptive effects of ATPM-ET in the hot plate test.

View Article and Find Full Text PDF

A new synthetic method for the removal of the 4, 5-bridged ether moiety of several opioids has been developed. This process offers a faster, simpler synthetic route to obtain the morphinone scaffold in high yields without the need for protection of the ketone moiety.

View Article and Find Full Text PDF

Based on a renewed importance recently attributed to bi- or multifunctional opioids, we report the synthesis and pharmacological evaluation of some analogues derived from our lead μ agonist / δ antagonist, H-Dmt-Tic-Gly-NH-Bzl. Our previous studies focused on the importance of the C-teminal benzyl function in the induction of such bifunctional activity. The introduction of some substituents in the para position of the phenyl ring (-Cl, -CH(3), partially -NO(2), inactive -NH(2)) was found to give a more potent μ agonist / antagonist effect associated with a relatively unmodified δ antagonist activity (pA(2) = 8.

View Article and Find Full Text PDF

A series of bivalent hydroxy ether butorphan ligands were prepared and their binding affinities at the opioid receptors determined. Addition of a hydroxy group to a hydrocarbon chain can potentiate binding affinity up to 27- and 86-fold at the mu and kappa opioid receptors, respectively. Two bivalent ligands with sub-nanomolar binding affinity at the mu and kappa opioid receptors were discovered.

View Article and Find Full Text PDF

The phenolic group of the potent mu and kappa opioid morphinan agonist/antagonists cyclorphan and butorphan was replaced by phenylamino and benzylamino groups including compounds with para-substituents in the benzene ring. These compounds are highly potent mu and kappa ligands, e.g.

View Article and Find Full Text PDF

Bivalent morphinan compounds containing ester linkers were synthesized and their binding affinities at the mu, delta, and kappa opioid receptors determined. Addition of methyl groups adjacent to the hydrolytically labile ester linkage increased stability while only partially affecting binding affinity. The resulting bivalent ligands with optimized spacer length and structure show potent binding profiles with the most potent compound (4b), having K(i) values of 0.

View Article and Find Full Text PDF

(+/-) SKF83959, like many other arylbenzazepines, elicits powerful neuroprotection in vitro and in vivo. The neuroprotective action of the compound was found to partially depend on its D(1)-like dopamine receptor agonistic activity. The precise mechanism for the (+/-) SKF83959-mediated neuroprotection remains elusive.

View Article and Find Full Text PDF

ATPM [(-)-3-amino-thiazolo[5,4-b]-N-cyclopropylmethylmorphinan hydrochloride] was found to have mixed kappa- and mu-opioid activity and identified to act as a full kappa-agonist and a partial mu-agonist by in vitro binding assays. The present study was undertaken to characterize its in vivo effects on morphine antinociceptive tolerance in mice and heroin self-administration in rats. ATPM was demonstrated to yield more potent antinociceptive effects than (-)U50,488H (trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide).

View Article and Find Full Text PDF

We synthesized several esters of R(-)-N-alkyl-11-hydroxy-2-methoxynoraporphines, assessed their affinities at dopamine D(1) and D(2) receptors in rat forebrain tissue and quantified their effects on motor activity in normal adult male rats. Tested compounds displayed moderate to high affinities to D(2) receptors but low affinities to D(1) receptors. The most D(2)-potent (K(i)=18.

View Article and Find Full Text PDF