Genome-wide association studies (GWAS) in humans and livestock have identified genes associated with metabolic traits. However, the causality of many of these genes on metabolic homeostasis is largely unclear due to a lack of detailed functional analyses. Here we report ligand-dependent corepressor-like (LCoRL) as a metabolic regulator for body weight and glucose homeostasis.
View Article and Find Full Text PDFType 1 diabetes (T1D) is associated with low bone and muscle mass, increased fracture risk, and impaired skeletal muscle function. Myostatin, a myokine that is systemically elevated in humans with T1D, negatively regulates muscle mass and bone formation. We investigated whether pharmacologic myostatin inhibition in a mouse model of insulin-deficient, streptozotocin (STZ)-induced diabetes is protective for bone and skeletal muscle.
View Article and Find Full Text PDFDiabetes is a chronic metabolic disorder that can lead to diabetic myopathy and bone diseases. The etiology of musculoskeletal complications in such metabolic disorders and the interplay between the muscular and osseous systems are not well understood. Exercise training promises to prevent diabetic myopathy and bone disease and offer protection.
View Article and Find Full Text PDFIn recent years, new therapies for the treatment of rare pediatric bone disorders have emerged, guided by an increasing understanding of the genetic and molecular etiology of these diseases. Herein, we review three such disorders, impacted by debilitating deficits in bone mineralization or cartilage ossification, as well as the novel disease-modifying drugs that are now available to treat these conditions. Specifically, we discuss asfotase alfa, burosumab-twza, and vosoritide, for the treatment of hypophosphatasia, X-linked hypophosphatemia and achondroplasia, respectively.
View Article and Find Full Text PDFA primary underlying defect makes β-cells "susceptible" to no longer compensate for the peripheral insulin resistance and to trigger the onset of type 2 diabetes (T2D). New evidence suggests that in T2D, β-cells are not destroyed but experience a loss of identity, reverting to a progenitor-like state and largely losing the ability to sense glucose and produce insulin. We assessed (using fluorescence microscopy and histomorphometry correlated with the glycaemic status) the main β-cell identity modifications as diabetes progresses in the TallyHo/JngJ (TH) male mice, a polygenic model of spontaneous T2D, akin to the human phenotype.
View Article and Find Full Text PDFCurr Opin Endocrinol Diabetes Obes
August 2022
Purpose Of Review: In this review, we describe the three primary mouse models of insulin-deficiency diabetes that have been used to study the effects of type 1 diabetes (T1D) on skeletal outcomes. These models include streptozotocin (chemically)-induced diabetes, autoimmune-mediated diabetes (the nonobese diabetes mouse), and a mutation in the insulin gene (the Akita mouse). We then describe the skeletal findings and/or skeletal phenotypes that have been delineated using these models.
View Article and Find Full Text PDFThe RASopathies comprise an ever-growing number of clinical syndromes resulting from germline mutations in components of the RAS/MAPK signaling pathway. While multiple organs and tissues may be affected by these mutations, this review will focus on how these mutations specifically impact the musculoskeletal system. Herein, we review the genetics and musculoskeletal phenotypes of these syndromes in humans.
View Article and Find Full Text PDFInhibitors of sodium/glucose co-transporter 2 (SGLT2) are currently in clinical use for type 2 diabetes (T2D) treatment due to their anti-hyperglycemic effect exerted by the inhibition of glucose reabsorption in the kidney. Inhibition of SGLT2 is associated with improvement of renal outcomes in chronic kidney disease associated with T2D. Our study aimed to describe the renal-specific phenotypic consequences of the SGLT2-loss of function "Jimbee" mutation within the Slc5a2 mouse gene in a non-diabetic/non-obese background.
View Article and Find Full Text PDFHigher fracture risk in type 2 diabetes (T2D) is attributed to disease-specific deficits in micro-structural and material properties of bone, although the primary cause is not yet established. The TallyHO (TH) mouse is a polygenic model of early-onset T2D and obesity analogous to adolescent-onset T2D in humans. Due to incomplete penetrance of the phenotype, ~25% of male TH mice never develop hyperglycemia, providing a strain-matched, non-diabetic control.
View Article and Find Full Text PDFThe relationship between osteoblast-specific insulin signaling, osteocalcin activation and gluco-metabolic homeostasis has proven to be complex and potentially inconsistent across animal-model systems and in humans. Moreover, the impact of postnatally acquired, osteoblast-specific insulin deficiency on the pancreas-to-skeleton-to-pancreas circuit has not been studied. To explore this relationship, we created a model of postnatal elimination of insulin signaling in osteoprogenitors.
View Article and Find Full Text PDFIntroduction: The Diabetes Prevention Program, an intensive lifestyle change program, effectively reduces the risk of progression from prediabetes to type 2 diabetes but is underutilized. An implementation study using formative research was undertaken to increase Diabetes Prevention Program referrals at a primary care clinic.
Study Design: A pragmatic, cluster randomized, mixed-methods study.
Selective sodium-dependent glucose co-transporter 2 inhibitors (SGLT2Is) are oral hypoglycemic medications utilized increasingly in the medical management of hyperglycemia among persons with type 2 diabetes (T2D). Despite favorable effects on cardiovascular events, specific SGLT2Is have been associated with an increased risk for atypical fracture and amputation in subgroups of the T2D population, a population that already has a higher risk for typical fragility fractures than the general population. To better understand the effect of SGLT2 blockade on skeletal integrity, independent of diabetes and its co-morbidities, we utilized the "Jimbee" mouse model of slc5a2 gene mutation to investigate the impact of lifelong SGLT2 loss-of-function on metabolic and skeletal phenotype.
View Article and Find Full Text PDFRecent clinical studies have revealed that a somatic mutation in MAP2K1, causing constitutive activation of MEK1 in osteogenic cells, occurs in melorheostotic bone disease in humans. We have generated a mouse model which expresses an activated form of MEK1 (MEK1DD) specifically in osteoprogenitors postnatally. The skeletal phenotype of these mice recapitulates many features of melorheostosis observed in humans, including extra-cortical bone formation, abundant osteoid formation, decreased mineral density, and increased porosity.
View Article and Find Full Text PDFDiabetes Metab Res Rev
February 2019
Persons with type 1 or type 2 diabetes have a significantly higher fracture risk than age-matched persons without diabetes, attributed to disease-specific deficits in the microarchitecture and material properties of bone tissue. Therefore, independent effects of diabetes drugs on skeletal integrity are vitally important. Studies of incretin-based therapies have shown divergent effects of different agents on fracture risk, including detrimental, beneficial, and neutral effects.
View Article and Find Full Text PDFTherapies to prevent diabetes in particular the progressive loss of β-cell mass and function and/or to improve the dysregulated metabolism associated with diabetes are highly sought. The incretin-based therapy comprising GLP-1R agonists and DPP-4 inhibitors have represented a major focus of pharmaceutical R&D over the last decade. The incretin hormone GLP-1 has powerful antihyperglycemic effect through direct stimulation of insulin biosynthesis and secretion within the β-cells; it normalizes β-cell sensitivity to glucose, has an antiapoptotic role, stimulates β-cell proliferation and differentiation, and inhibits glucagon secretion.
View Article and Find Full Text PDFThose with type 1 diabetes (T1D) are more likely to suffer a fracture than age- and sex-matched individuals without diabetes, despite daily insulin therapy. In rodent studies examining the effect of bone- or glucose-targeting therapies on preventing the T1D-related decrease in bone strength, insulin co-therapy is often not included, despite the known importance of insulin signaling to bone mass accrual. Therefore, working toward a relevant pre-clinical model of diabetic bone disease, we assessed the effect of continuous subcutaneous insulin infusion (CSII) therapy at escalating doses on preserving bone and the effect of delayed CSII on rescuing the T1D-related bone deterioration in an established murine model of T1D.
View Article and Find Full Text PDFIn developing communities, intestinal infection is associated with poor weight gain and linear-growth failure. Prior translational animal models have focused on weight gain investigations into key contributors to linear growth failure have been lacking. We hypothesized that murine intestinal infection with Citrobacter rodentium would induce linear-growth failure associated with systemic inflammation and suppressed serum levels of insulin-like growth factor-1 (IGF-1).
View Article and Find Full Text PDFSkeletal co-morbidities in type 1 diabetes include an increased risk for fracture and delayed fracture healing, which are intertwined with disease duration and the presence of other diabetic complications. As such, chronic hyperglycemia is undoubtedly a major contributor to these outcomes, despite standard insulin-replacement therapy. Therefore, using the streptozotocin (STZ)-induced model of hypoinsulinemic hyperglycemia in DBA/2J male mice, we compared the effects of two glucose lowering therapies on the fracture resistance of bone and markers of bone turnover.
View Article and Find Full Text PDFPurpose Of Review: To describe the effects of type 1 diabetes on bone cells.
Recent Findings: Type 1 diabetes (T1D) is associated with low bone mineral density, increased risk of fractures, and poor fracture healing. Its effects on the skeleton were primarily attributed to impaired bone formation, but recent data suggests that bone remodeling and resorption are also compromised.
Persons with type 1 and type 2 diabetes have increased fracture risk, attributed to deficits in the microarchitecture and strength of diabetic bone, thought to be mediated, in part, by the consequences of chronic hyperglycemia. Therefore, to examine the effects of a glucose-lowering SGLT2 inhibitor on blood glucose (BG) and bone homeostasis in a model of diabetic bone disease, male DBA/2J mice with or without streptozotocin (STZ)-induced hyperglycemia were fed chow containing the SGLT2 inhibitor, canagliflozin (CANA), or chow without drug, for 10weeks of therapy. Thereafter, serum bone biomarkers were measured, fracture resistance of cortical bone was assessed by μCT analysis and a three-point bending test of the femur, and vertebral bone strength was determined by compression testing.
View Article and Find Full Text PDFIn type 1 diabetes, diabetic bone disease (DBD) is characterized by decreased bone mineral density, a state of low bone turnover and an increased risk of fracture. Animal models of DBD demonstrate that acquired alterations in trabecular and cortical bone microarchitecture contribute to decreased bone strength in diabetes. With anti-collagenolytic and anti-inflammatory properties, tetracycline derivatives may prevent diabetes-related decreases in bone strength.
View Article and Find Full Text PDFObjective: Using a streptozotocin (STZ)-induced mouse model of type 1 diabetes (T1D), we have previously demonstrated that long-term diabetes inhibits regenerative bone formation during tibial distraction osteogenesis (DO) and perturbs skeletal integrity by decreasing cortical thickness, bone mineral density and bone's resistance to fracture. Because long-standing T1D is also associated with a deficiency of insulin-like growth factor I (IGF-I), we examined the effects of systemic IGF-I treatment on skeletal microarchitecture and strength, as well as on bone formation in diabetic mice.
Research Design And Methods: Streptozotocin-induced diabetic or control mice were treated with recombinant human IGF-I (rhIGF-I, 1.
Clin Rev Bone Miner Metab
March 2013
Most studies across a variety of geographic locations suggest that vitamin D insufficiency is more common in individuals with type 1 diabetes (T1D) compared to the general population. In type 2 diabetes (T2D), while obesity is commonplace and lower vitamin D levels are present in obese adolescents and adults, the association between vitamin D insufficiency and T2D is less clear. Studies suggest that the relationship between T2D and vitamin D may be concurrently influenced by ethnicity, geography, BMI and age.
View Article and Find Full Text PDFJ Diabetes Metab
November 2011
Recent studies in diabetic humans and rodent models of diabetes have identified osteopathy as a serious complication of type 1 (T1D) and type 2 (T2D) diabetes. Accumulating evidence suggests that disruption of insulin and insulin-like growth factor 1 (IGF-1) homeostasis in the diabetic condition may be responsible for the observed skeletal deficits. Indeed, replacement of insulin or IGF-1 in rodent models of T1D results in significant improvement in bone healing despite ongoing moderate to severe hyperglycemia.
View Article and Find Full Text PDF