Unlabelled: The multifunctional HIV-1 accessory protein Vif counters the antiviral activities of APOBEC3G (A3G) and APOBEC3F (A3F), and some Vifs counter stable alleles of APOBEC3H (A3H). Studies in humanized mice have shown that HIV-1 lacking Vif expression is not viable. Here, we look at the relative contributions of the three APOBEC3s to viral extinction.
View Article and Find Full Text PDFBackground: Nef is a multifunctional HIV-1 protein critical for progression to AIDS. Humans infected with nef(-) HIV-1 have greatly delayed or no disease consequences. We have contrasted nef(-) and nef(+) infection of BLT humanized mice to better characterize Nef's pathogenic effects.
View Article and Find Full Text PDFBackground: The HIV-1 accessory protein, Nef, is decisive for progression to AIDS. In vitro characterization of the protein has described many Nef activities of unknown in vivo significance including CD4 downregulation and a number of activities that depend on Nef interacting with host SH3 domain proteins. Here, we use the BLT humanized mouse model of HIV-1 infection to assess their impact on viral replication and pathogenesis and the selection pressure to restore these activities using enforced in vivo evolution.
View Article and Find Full Text PDFInnate immune restriction factors represent important specialized barriers to zoonotic transmission of viruses. Significant consideration has been given to their possible use for therapeutic benefit. The apolipoprotein B mRNA editing enzyme catalytic polypeptide 3 (APOBEC3) family of cytidine deaminases are potent immune defense molecules capable of efficiently restricting endogenous retroelements as well as a broad range of viruses including Human Immunodeficiency virus (HIV), Hepatitis B virus (HBV), Human Papilloma virus (HPV), and Human T Cell Leukemia virus (HTLV).
View Article and Find Full Text PDFBackground: HIV-1 Nef is a multifunctional protein required for full pathogenicity of the virus. As Nef has no known enzymatic activity, it necessarily functions through protein-protein interaction interfaces. A critical Nef protein interaction interface is centered on its polyproline segment (P69VRPQVPLRP78) which contains the helical SH3 domain binding protein motif, PXXPXR.
View Article and Find Full Text PDFBackground: The outcome of untreated HIV-1 infection is progression to AIDS and death in nearly all cases. Some important exceptions are the small number of patients infected with HIV-1 deleted for the accessory gene, nef. With these infections, disease progression is entirely suppressed or greatly delayed.
View Article and Find Full Text PDFAdvances in the last several years have enhanced mechanistic understanding of Nef-induced CD4 and MHCI downregulation and have suggested a new paradigm for analyzing Nef function. In both of these cases, Nef acts by forming ternary complexes with significant contributions to stability imparted by non-canonical interactions. The mutational analyses and binding assays that have led to these conclusions are discussed.
View Article and Find Full Text PDFBackground: The HIV-1 pathogenic factor, Nef, is a multifunctional protein present in the cytosol and on membranes of infected cells. It has been proposed that a spatial and temporal regulation of the conformation of Nef sequentially matches Nef's multiple functions to the process of virion production. Further, it has been suggested that dimerization is required for multiple Nef activities.
View Article and Find Full Text PDFThe development of anti-virals has blunted the AIDS epidemic in the Western world but globally the epidemic has not been curtailed. Standard vaccines have not worked, and attenuated vaccines are not being developed because of safety concerns. Interest in attenuated vaccines has centered on isolated cases of patients infected with HIV-1 containing a deleted nef gene.
View Article and Find Full Text PDFThe human immunodeficiency virus type 1 (HIV-1) accessory protein Nef downregulates major histocompatibility complex class I (MHC-I) from the cell surface. It has been proposed that the direct interaction of the acidic cluster (AC) of Nef, (62)EEEE(65), with the furin binding region (fbr) of PACS-1 is crucial for this Nef function. Contrary to this proposal, evidence is presented here that the four glutamates in Nef do not functionally engage the PACS-1 fbr.
View Article and Find Full Text PDFIn this study, Pluronic F127 hydrogels were characterised as an injectable system for the controlled release of drugs with variable molecular weights (FITC-Dextran at 70 and 40 kDa). In addition, the polymer-solvent interaction parameter (chi) was successfully estimated. Pluronic hydrogels (10-25 wt.
View Article and Find Full Text PDFHIV-1 Nef is a multifunctional protein that exerts its activities through interactions with multiple cellular partners. Nef uses different domains and mechanisms to exert its functions including cell surface down-modulation of CD4 and MHC-I receptors and activation of the serine/threonine kinase PAK-2. We inserted tags at the C-terminus and proximal to the N-terminus of Nef and the effects on Nef's structure/function relationships were examined.
View Article and Find Full Text PDFIn this issue of Cell, Schindler et al. (2006) show that the Nef protein from nonpathogenic strains of simian immunodeficiency virus (SIV) induces the downregulation of host T cell receptor/CD3, whereas Nef from human immunodeficiency virus (HIV-1) does not. This loss of function in the Nef of HIV-1 may partly explain the pathogenicity of this virus.
View Article and Find Full Text PDFThe human immunodeficiency virus type 1 (HIV-1) early gene product Nef is a multifunctional protein that alters numerous pathways of T-cell function, including endocytosis, signal transduction, vesicular trafficking, and immune modulation, and is a major determinant of pathogenesis. Individual Nef functions include PAK-2 activation, CD4 downregulation, major histocompatibility complex (MHC) class I downregulation, and enhancement of viral particle infectivity. How Nef accomplishes its multiple tasks presents a difficult problem of mechanistic analysis because of the complications associated with multiple, overlapping functional domains in the context of significant sequence variability.
View Article and Find Full Text PDFThe accessory human immunodeficiency virus type 1 (HIV-1) protein Nef activates the autophosphorylation activity of p21-activated kinase 2 (PAK2). Merlin, a cellular substrate of PAK2, is homologous to the ezrin-radixin-moesin family and plays a critical role in Rac signaling. To assess the possible impact on host cell metabolism of Nef-induced PAK2 activation, we investigated the phosphorylation of merlin in Nef expressing cells.
View Article and Find Full Text PDFHuman immunodeficiency virus type 1 (HIV-1) Nef activation of p21-activated kinase 2 (PAK-2) was recapitulated in a cell-free system consisting of in vitro-transcribed RNA, rabbit reticulocyte lysate, and microsomal membranes on the basis of the following observations: (i) Nef associated with a kinase endogenous to the rabbit reticulocyte lysate that was identified as PAK-2, (ii) Nef-associated kinase activity was detected with Nefs from HIV-1(SF2), HIV-1(YU2), and SIV(mac239), (iii) kinase activation was not detected with a myristoylation-defective Nef (HIV-1(SF2)NefG2A) or with a Nef defective in PAK-2 activation but fully competent in other Nef functions (HIV-1(SF2)NefF195I), and (iv) Nef-associated kinase activation required activated endogenous p21 GTPases (Rac1 or Cdc42). The cell-free system was used to analyze the mechanism of Nef activation of PAK-2. First, studies suggest that the p21 GTPases may act transiently to enhance Nef activation of PAK-2 in vitro.
View Article and Find Full Text PDFWe previously reported that inhibition of endosomal/lysosomal function can dramatically enhance human immunodeficiency virus type 1 (HIV-1) infectivity, suggesting that under these conditions productive HIV-1 infection can occur via the endocytic pathway. Here we further examined this effect with bafilomycin A1 (BFLA-1) and show that this enhancement of infectivity extends to all HIV-1 isolates tested regardless of coreceptor usage. However, isolate-specific differences were observed in the magnitude of the effect.
View Article and Find Full Text PDFThe nef gene is present in all primate lentiviruses (HIV-1, HIV-2, and SIVs). In vivo, Nef has been shown to be a major determinant of virus pathogenicity. In vitro, many different Nef activities have been reported, including CD4 and MHC I downregulation, enhanced virion infectivity, and T-cell activation.
View Article and Find Full Text PDF