Publications by authors named "John L Daristotle"

Nanomaterials offer unique opportunities to engineer immunomodulatory activity. In this work, we report the Toll-like receptor agonist activity of a nanoscale adjuvant zeolitic imidazolate framework-8 (ZIF-8). The accumulation of ZIF-8 in endosomes and the pH-responsive release of its subunits enable selective engagement with endosomal Toll-like receptors, minimizing the risk of off-target activation.

View Article and Find Full Text PDF

Decentralized manufacture of thermostable mRNA vaccines in a microneedle patch (MNP) format could enhance vaccine access in low-resource communities by eliminating the need for a cold chain and trained healthcare personnel. Here we describe an automated process for printing MNP Coronavirus Disease 2019 (COVID-19) mRNA vaccines in a standalone device. The vaccine ink is composed of lipid nanoparticles loaded with mRNA and a dissolvable polymer blend that was optimized for high bioactivity by screening formulations in vitro.

View Article and Find Full Text PDF

Adhesions are dense, fibrous bridges that adjoin tissue surfaces due to uncontrolled inflammation following postoperative mesothelial injury. A widely used adhesion barrier material in Seprafilm often fails to prevent transverse scar tissue deposition because of its poor mechanical properties, rapid degradation profile, and difficulty in precise application. Solution blow spinning (SBS), a polymer fiber deposition technique, allows for the placement of in situ tissue-conforming and tissue-adherent scaffolds with exceptional mechanical properties.

View Article and Find Full Text PDF

Food fortification is an effective strategy to address vitamin A (VitA) deficiency, which is the leading cause of childhood blindness and drastically increases mortality from severe infections. However, VitA food fortification remains challenging due to significant degradation during storage and cooking. We utilized an FDA-approved, thermostable, and pH-responsive basic methacrylate copolymer (BMC) to encapsulate and stabilize VitA in microparticles (MPs).

View Article and Find Full Text PDF

Next-generation therapeutics require advanced drug delivery platforms with precise control over morphology and release kinetics. A recently developed microfabrication technique enables fabrication of a new class of injectable microparticles with a hollow core-shell structure that displays pulsatile release kinetics, providing such capabilities. Here, we study this technology and the resulting core-shell microstructures.

View Article and Find Full Text PDF
Article Synopsis
  • Autologous skin cell suspensions (ASCS) are used to treat burns while minimizing the wound burden from donor sites, but the current standard dressing limits effectiveness.
  • A new spray-on polymer dressing was tested against traditional ASCS dressings on pig skin wounds, with the hypothesis that it would perform similarly in promoting healing.
  • Results showed no significant differences in healing or scarring between the two dressings, indicating the spray-on polymer is a promising alternative due to its ease of application and ability to conform to irregular wounds, warranting further research.
View Article and Find Full Text PDF

Pressure-sensitive adhesives typically used for bandages are nonbiodegradable, inhibiting healing, and may cause an allergic reaction. Here, we investigated the effect of biodegradable copolymers with promising thermomechanical properties on wound healing for their eventual use as biodegradable, biocompatible adhesives. Blends of low molecular weight (LMW) and high molecular weight (HMW) poly(lactide--caprolactone) (PLCL) are investigated as tissue adhesives in comparison to a clinical control.

View Article and Find Full Text PDF

Viscoelastic blends of biodegradable polyesters with low and high molecular weight distributions have remarkably strong adhesion (significantly greater than 1 N/cm) to soft, wet tissue. Those that transition from viscous flow to elastic, solidlike behavior at approximately 1 Hz demonstrate pressure-sensitivity yet also have sufficient elasticity for durable bonding to soft, wet tissue. The pressure-sensitive tissue adhesive (PSTA) blends produce increasingly stronger pull-apart adhesion in response to compressive pressure application, from 10 to 300 s.

View Article and Find Full Text PDF

Conventional wound dressings are difficult to apply to large total body surface area (TBSA) wounds, as they typically are prefabricated, require a layer of adhesive coating for fixation, and need frequent replacement for entrapped exudate. Large TBSA wounds as well as orthopedic trauma and low-resource surgery also have a high risk of infection. In this report, a sprayable and intrinsically adhesive wound dressing loaded with antimicrobial silver is investigated that provides personalized fabrication with minimal patient contact.

View Article and Find Full Text PDF

A tunable protease responsive nanoparticle hydrogel (PRNH) that demonstrates large non-iridescent color changes due to a degradation-directed assembly of nanoparticles is reported. Structurally colored composites are fabricated with silica particles, 4-arm poly(ethylene glycol) norbornene (4PEGN), and a proteolytically degradable peptide. When placed in a protease solution, the peptide crosslinks degrade causing electrostatic binding and adsorption of the polymer to the particle surface which leads to the assembly of particles into compact amorphous arrays with structural color.

View Article and Find Full Text PDF

Commercially available surgical sealants for internal use either lack sufficient adhesion or produce cytotoxicity. This work describes a surgical sealant based on a polymer blend of poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) that increases wet tissue adherence by incorporation of nano-to-microscale silica particles, without significantly affecting cell viability, biodegradation rate, or local inflammation. In functional studies, PLGA/PEG/silica composite sealants produce intestinal burst pressures that are comparable to cyanoacrylate glue (160 mmHg), ∼2 times greater than the non-composite sealant (59 mmHg), and ∼3 times greater than fibrin glue (49 mmHg).

View Article and Find Full Text PDF

Improving the portability of diagnostic medicine is crucial for alleviating global access-to-care deficiencies. This requires not only designing devices that are small and lightweight, but also autonomous and independent of electricity. Here, we present a strategy for conducting automated multistep diagnostic assays using chemically generated, passively regulated heat.

View Article and Find Full Text PDF

Solution blow spinning (SBS) is a technique that can be used to deposit fibers in situ at low cost for a variety of applications, which include biomedical materials and flexible electronics. This review is intended to provide an overview of the basic principles and applications of SBS. We first describe a method for creating a spinnable polymer solution and stable polymer solution jet by manipulating parameters such as polymer concentration and gas pressure.

View Article and Find Full Text PDF

Background: Solution blow spinning is a technique for depositing polymer fibers with promising potential use as a surgical sealant. This study assessed the feasibility and efficacy of solution blow spun polymer (BSP) for sealing bowel perforations in a mouse model of partial cecal transection. We then evaluated its use for reinforcing a surgical anastomosis in a preclinical piglet model.

View Article and Find Full Text PDF

The development of practical and efficient surgical sealants has the propensity to improve operational outcomes. A biodegradable polymer blend is fabricated as a nonwoven fiber mat in situ. After direct deposition onto the tissue of interest, the material transitions from a fiber mat to a film.

View Article and Find Full Text PDF

Ethanol is widely used as an additive to gasoline, and production of ethanol can come from single-celled organisms such as yeast. We systematically studied the influence of ethanol on common lipids found in yeast plasma membranes, specifically phosphatidylserine (PS), phosphatidylethanolamine (PE), and phosphatidylcholine (PC). Molecular dynamics simulations were used to probe changes to the biophysical properties of membranes with varying equilibrated bulk ethanol concentrations less than 25 mol %.

View Article and Find Full Text PDF