Publications by authors named "John L Blakemore"

Autophagy modulates lipid turnover, cell survival, inflammation, and atherogenesis. Scavenger receptor class B type I (SR-BI) plays a crucial role in lysosome function. Here, we demonstrate that SR-BI regulates autophagy in atherosclerosis.

View Article and Find Full Text PDF

Lipid peroxidation generates reactive dicarbonyls including isolevuglandins (IsoLGs) and malondialdehyde (MDA) that covalently modify proteins. Humans with familial hypercholesterolemia (FH) have increased lipoprotein dicarbonyl adducts and dysfunctional HDL. We investigate the impact of the dicarbonyl scavenger, 2-hydroxybenzylamine (2-HOBA) on HDL function and atherosclerosis in Ldlr mice, a model of FH.

View Article and Find Full Text PDF

Macrophage apoptosis and efferocytosis are key determinants of atherosclerotic plaque inflammation and necrosis. Bone marrow transplantation studies in ApoE- and LDLR-deficient mice revealed that hematopoietic scavenger receptor class B type I (SR-BI) deficiency results in severely defective efferocytosis in mouse atherosclerotic lesions, resulting in a 17-fold higher ratio of free to macrophage-associated dead cells in lesions containing SR-BI(-/-) cells, 5-fold more necrosis, 65.2% less lesional collagen content, nearly 7-fold higher dead cell accumulation, and 2-fold larger lesion area.

View Article and Find Full Text PDF

Tissue cholesterol accumulation, macrophage infiltration, and inflammation are features of atherosclerosis and some forms of dermatitis. HDL and its main protein, apoAI, are acceptors of excess cholesterol from macrophages; this process inhibits tissue inflammation. Recent epidemiologic and clinical trial evidence questions the role of HDL and its manipulation in cardiovascular disease.

View Article and Find Full Text PDF

Background: Proprotein convertase subtilisin/kexin type 9 (PCSK9) modulates low-density lipoprotein (LDL) receptor (LDLR) degradation, thus influencing serum cholesterol levels. However, dysfunctional LDLR causes hypercholesterolemia without affecting PCSK9 clearance from the circulation.

Methods And Results: To study the reciprocal effects of PCSK9 and LDLR and the resultant effects on serum cholesterol, we produced transgenic mice expressing human (h) PCSK9.

View Article and Find Full Text PDF

Background: We previously demonstrated that macrophage low-density lipoprotein receptor (LDLR)-related protein 1 (LRP1) deficiency increases atherosclerosis despite antiatherogenic changes including decreased uptake of remnants and increased secretion of apolipoprotein E (apoE). Thus, our objective was to determine whether the atheroprotective effects of LRP1 require interaction with apoE, one of its ligands with multiple beneficial effects.

Methods And Results: We examined atherosclerosis development in mice with specific deletion of macrophage LRP1 (apoE(-/-) MΦLRP1(-/-)) and in LDLR(-/-) mice reconstituted with apoE(-/-) MΦLRP1(-/-) bone marrow.

View Article and Find Full Text PDF

The progression of atherosclerosis is associated with leukocyte infiltration within lesions. We describe a technique for the ex vivo imaging of cellular recruitment in atherogenesis which utilizes quantum dots (QD) to color-code different cell types within lesion areas. Spectrally distinct QD were coated with the cell-penetrating peptide maurocalcine to fluorescently-label immunomagnetically isolated monocyte/macrophages and T lymphocytes.

View Article and Find Full Text PDF

Objective: We used genetically engineered mouse hematopoietic progenitor cells (HPCs) to investigate the therapeutic effects of human apoAI on atherosclerosis in apoE(-/-) mice.

Methods And Results: Lentiviral constructs expressing either human apoAI (LV-apoAI) or green fluorescent protein (LV-GFP) cDNA under a macrophage specific promoter (CD68) were generated and used for ex vivo transduction of mouse HPCs and macrophages. The transduction efficiency was >25% for HPCs and >70% for macrophages.

View Article and Find Full Text PDF