Many human diseases are associated with aberrant regulation of phosphoprotein signaling networks. Src homology 2 (SH2) domains represent the major class of protein domains in metazoans that interact with proteins phosphorylated on the amino acid residue tyrosine. Although current SH2 domain prediction algorithms perform well at predicting the sequences of phosphorylated peptides that are likely to result in the highest possible interaction affinity in the context of random peptide library screens, these algorithms do poorly at predicting the interaction potential of SH2 domains with physiologically derived protein sequences.
View Article and Find Full Text PDFFirst-generation interaction maps of Src homology 2 (SH2) domains with receptor tyrosine kinase (RTK) phosphosites have previously been generated using protein microarray (PM) technologies. Here, we developed a large-scale fluorescence polarization (FP) methodology that was able to characterize interactions between SH2 domains and ErbB receptor phosphosites with higher fidelity and sensitivity than was previously achieved with PMs. We used the FP assay to query the interaction of synthetic phosphopeptides corresponding to 89 ErbB receptor intracellular tyrosine sites against 93 human SH2 domains and 2 phosphotyrosine binding (PTB) domains.
View Article and Find Full Text PDFBackground: The pro-apoptotic protein Siva-1 functions in both extrinsic and intrinsic cell death signaling; however, the exact contribution of the endogenous Siva-1 to DNA damage-induced apoptosis is unclear. Using cisplatin, a chemotherapeutic drug, to induce DNA damage and cell death, we determined the role of Siva-1.
Methods: Cisplatin treated HCT116 colorectal carcinoma cells (p53+/+ and -/-) were used in the study.
Although expression of the ErbB4 receptor tyrosine kinase in breast cancer is generally regarded as a marker for favorable patient prognosis, controversial exceptions have been reported. Alternative splicing of ErbB4 pre-mRNAs results in the expression of distinct receptor isoforms with differential susceptibility to enzymatic cleavage and different downstream signaling protein recruitment potential that could affect tumor progression in different ways. ErbB4 protein expression from nontransfected cells is generally low compared with ErbB1 in most cell lines, and much of our knowledge of the role of ErbB4 in breast cancer is derived from the ectopic overexpression of the receptor in non-breast-derived cell lines.
View Article and Find Full Text PDF