Publications by authors named "John Kulik"

Similar to the vast majority of cases in humans, the development of type 1 diabetes (T1D) in the NOD mouse model is due to T-cell mediated autoimmune destruction of insulin producing pancreatic β cells. Particular major histocompatibility complex (MHC) haplotypes (designated HLA in humans; and H2 in mice) provide the primary genetic risk factor for T1D development. It has long been appreciated that within the MHC, particular unusual class II genes contribute to the development of T1D in both humans and NOD mice by allowing for the development and functional activation of β cell autoreactive CD4 T cells.

View Article and Find Full Text PDF

Similar to the vast majority of cases in humans, the development of type 1 diabetes (T1D) in the NOD mouse model is due to T-cell mediated autoimmune destruction of insulin-producing pancreatic beta cells. Particular major histocompatibility complex (MHC) haplotypes (designated HLA in humans and H2 in mice) provide the primary genetic risk factor for T1D development. It has long been appreciated that within the MHC, particular unusual class II genes contribute to the development of T1D in both humans and NOD mice by allowing for the development and functional activation of beta-cell autoreactive CD4 T cells.

View Article and Find Full Text PDF

A detailed characterization of a cardiac muscle-specific, ligand-regulated gene expression system was performed in transgenic mice using the inducing ligand mifepristone (MFP). Several lines of double transgenic mice were created that expressed a bacterial lacZ reporter gene in the heart, under the control of a MFP-activated transcription factor constitutively expressed in cardiac muscle. The transgenic mice, which were administered MFP at a dose of 1 micromol/l in the drinking water, responded to the ligand within 24 h.

View Article and Find Full Text PDF

Transgenic overexpression of Cu(+2)/Zn(+2) superoxide dismutase 1 (SOD1) harboring an amyotrophic lateral sclerosis (ALS)-linked familial genetic mutation (SOD1(G93A)) in a Sprague-Dawley rat results in ALS-like motor neuron disease. Motor neuron disease in these rats depended on high levels of mutant SOD1 expression, increasing from 8-fold over endogenous SOD1 in the spinal cord of young presymptomatic rats to 16-fold in end-stage animals. Disease onset in these rats was early, approximately 115 days, and disease progression was very rapid thereafter with affected rats reaching end stage on average within 11 days.

View Article and Find Full Text PDF