Preeclampsia is a serious pregnancy disorder which in extreme cases may lead to maternal and fetal injury or death. Preexisting conditions which increase oxidative stress, e.g.
View Article and Find Full Text PDFTissue damage and necrosis from inflammatory processes are a consequence of ischemia reperfusion injury (IRI). In skeletal muscle, ischemia reduces the aerobic energy capacity of muscle cells, leading to adverse biochemical alterations and inflammation. The goal of this study is to show that exposure to near-infrared light (NIR) during a period of ischemia reduces IRI by decreasing necrosis and inflammation in addition to decreasing proinflammatory M1 and increasing protective M2 macrophages.
View Article and Find Full Text PDFJ Photochem Photobiol B
July 2021
Red light (670 nm) promotes ex vivo dilation of blood vessels in a nitric oxide (NO) dependent, but eNOS independent manner by secreting a quasi-stable and transferable vasoactive substance with the characteristics of S-nitrosothiols (RSNO) from the endothelium. In the present work we establish that 670 nm light mediated vasodilation occurs in vivo and is physiologically stable. Light exposure depletes intracellular S-nitroso protein while concomitantly increasing extracellular RNSO, suggesting vesicular pathways are involved.
View Article and Find Full Text PDFJPEN J Parenter Enteral Nutr
February 2021
Background: Intralipid (ILP), a lipid emulsion, protects organs against ischemia/reperfusion (IR) injury. We hypothesized that ILP activates endothelial nitric oxide synthase (eNOS) and increases NO release from endothelial cells (ECs) through a fatty-acid translocase cluster of differentiation (CD36) mediated endocytotic mechanism, acting as a potentially protective paracrine signal during oxidative stress.
Methods: Human umbilical-vein ECs were exposed to 1% ILP for 2 hours followed by oxidative stress with 0.
Objective: Diabetes mellitus is a significant risk factor for peripheral artery disease. Diabetes mellitus induces chronic states of oxidative stress and vascular inflammation that increase neutrophil activation and release of myeloperoxidase. The goal of this study is to determine whether inhibiting myeloperoxidase reduces oxidative stress and neutrophil infiltration, increases vascularization, and improves blood flow in a diabetic murine model of hindlimb ischaemia.
View Article and Find Full Text PDFNeurons in a subregion of the medial parabrachial (PB) complex control expiratory duration (TE) and the inspiratory on-switch. To better understanding the underlying mechanisms, this study aimed to determine the types of medullary neurons in the rhythmogenic preBötzinger/Bötzinger Complex (preBötC/BötC) and adjacent areas that receive synaptic inputs from the PB subregion and whether these inputs are excitatory or inhibitory in nature. Highly localized electrical stimuli in the PB subregion combined with multi-electrode recordings from respiratory neurons and phrenic nerve activities were used to generate stimulus-to-spike event histograms to detect correlations in decerebrate, vagotomized dogs during isocapnic hyperoxia.
View Article and Find Full Text PDFThe interferon regulatory factor 5 (IRF5) is crucial for cells to determine if they respond in a pro-inflammatory or anti-inflammatory fashion. IRF5's ability to switch cells from one pathway to another is highly attractive as a therapeutic target. We designed a decoy peptide IRF5D with a molecular modeling software for designing small molecules and peptides.
View Article and Find Full Text PDFInterferon regulatory factor 5 (IRF5) has been called a "master switch" for its ability to determine whether cells mount proinflammatory or anti-inflammatory responses. Accordingly, IRF5 should be an attractive target for therapeutic drug development. Here we report on the development of a novel decoy peptide inhibitor of IRF5 that decreases myocardial inflammation and improves vascular endothelial cell (EC) function in tight-skin (Tsk/+) mice.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2015
Implant fixation through osseointegration is essential for the success of uncemented total joint arthroplasty, and nature and composition of implant surface play a critical role in this process. Despite widespread use of uncemented implants, the extent of bone ingrowth into implants is generally only a small percentage of the total implant surface. An understanding of the processes whereby bone cells grow into and multiply on porous surfaces is critical for the design and manufacture of implants that maximize ingrowth and implant fixation.
View Article and Find Full Text PDFMetal on metal articulations in hip arthroplasty offer advantages, including lower volumetric wear compared to conventional metalonpolyethylene bearings, and increased resistance to dislocation. Reports described early failures, with histologic features similar to a Type IV immune response. Mechanisms by which metal wear products cause this reaction are not completely understood.
View Article and Find Full Text PDFThe apoAI mimetic 4F was designed to inhibit atherosclerosis by improving HDL. We reported that treating tight skin (Tsk(-/+)) mice, a model of systemic sclerosis (SSc), with 4F decreases inflammation and restores angiogenic potential in Tsk(-/+) hearts. Interferon regulating factor 5 (IRF5) is important in autoimmunity and apoptosis in immune cells.
View Article and Find Full Text PDFSystemic sclerosis (SSc) is an autoimmune connective tissue disorder characterized by oxidative stress, impaired vascular function, and attenuated angiogenesis. The tight-skin (Tsk(-/+)) mouse is a model of SSc that displays many of the cellular features of the clinical disease. We tested the hypotheses that abnormal fibrillin-1 expression and chronic phospholipid oxidation occur in Tsk(-/+) mice and, furthermore, that these factors precipitate a prooxidant state, collagen-related protein expression, apoptosis, and mesenchymal transition in endothelial cells cultured on Tsk(-/+) extracellular matrix.
View Article and Find Full Text PDFBackground: Intracellular acidosis during early reperfusion after coronary artery occlusion was recently linked to cardioprotection resulting from myocardial ischemic postconditioning. We tested the hypotheses that transient alkalosis during early reperfusion abolishes helium preconditioning and that the mitochondrial permeability transition pore inhibitor cyclosporin A (CsA) restores the cardioprotective effects of helium during alkalosis in vivo.
Methods: Rabbits (n = 36) instrumented for hemodynamics measurement were subjected to a 30-min left anterior descending coronary artery occlusion and 3-h reperfusion.
Objectives: Brief, repetitive administration of helium before prolonged coronary artery occlusion and reperfusion protects myocardium against infarction. Opioid receptors mediate the cardioprotective effects of ischemic pre- and postconditioning, but whether these receptors also play a role in helium preconditioning is unknown. The authors tested the hypotheses that opioid receptors mediate helium preconditioning and that morphine (a mu(1)-opioid receptor agonist with delta(1)-opioid agonist properties) lowers the threshold of cardioprotection produced by helium in vivo.
View Article and Find Full Text PDFBackground: Nitric oxide is known to be essential for early anesthetic preconditioning (APC) and ischemic preconditioning (IPC) of myocardium. Heat shock protein 90 (Hsp90) regulates endothelial nitric oxide synthase (eNOS) activity. In this study, the authors tested the hypothesis that Hsp90-eNOS interactions modulate APC and IPC.
View Article and Find Full Text PDFBackground: Prosurvival signaling kinases inhibit glycogen synthase kinase-3beta (GSK-3beta) activity and stimulate apoptotic protein p53 degradation. Helium produces cardioprotection by activating prosurvival kinases, but whether GSK and p53 inhibition mediate this process is unknown. We tested the hypothesis that inhibition of GSK or p53 lowers the threshold of helium cardioprotection via a mitochondrial permeability transition pore (mPTP)-dependent mechanism.
View Article and Find Full Text PDFBackground: Helium produces preconditioning against myocardial infarction by activating prosurvival signaling, but whether nitric oxide (NO) generated by endothelial NO synthase plays a role in this phenomenon is unknown. We tested the hypothesis that NO mediates helium-induced cardioprotection in vivo.
Methods: Rabbits (n = 62) instrumented for hemodynamic measurement were subjected to a 30-min left anterior descending coronary artery occlusion and 3 h reperfusion, and received 0.
Objectives: Helium produces preconditioning by activating prosurvival kinases, but the roles of reactive oxygen species (ROS) or mitochondrial adenosine triphosphate-regulated potassium (K(ATP)) channels in this process are unknown. The authors tested the hypothesis that ROS and mitochondrial K(ATP) channels mediate helium-induced preconditioning in vivo.
Design: A randomized, prospective study.
Background: A growing body of evidence indicates that statins decrease perioperative cardiovascular risk and that these drugs may be particularly efficacious in diabetes. Diabetes and hyperglycemia abolish the cardioprotective effects of ischemic preconditioning (IPC). The authors tested the hypothesis that simvastatin restores the beneficial effects of IPC during hyperglycemia through a nitric oxide-mediated mechanism.
View Article and Find Full Text PDFThe selective phosphodiesterase type 5 inhibitor sildenafil has been demonstrated to produce cardioprotection; however, diabetes is known to abolish cardioprotective signaling. We tested the hypothesis that sildenafil-induced cGMP-dependent protein kinase-I (PKG-I) expression and cardioprotection are attenuated by diabetes. Barbiturate-anesthetized dogs (n = 38) were instrumented for measurement of hemodynamics and subjected to 60-minute occlusion of the left anterior descending coronary artery and 3-hour reperfusion.
View Article and Find Full Text PDFBackground: The anesthetic noble gas, xenon, produces cardioprotection. We hypothesized that other noble gases without anesthetic properties [helium (He), neon (Ne), argon (Ar)] also produce cardioprotection, and further hypothesized that this beneficial effect is mediated by activation of prosurvival signaling kinases [including phosphatidylinositol-3-kinase, extracellular signal-regulated kinase, and 70-kDa ribosomal protein s6 kinase] and inhibition of mitochondrial permeability transition pore (mPTP) opening in vivo.
Methods: Rabbits (n = 98) instrumented for hemodynamic measurement and subjected to a 30-min left anterior descending coronary artery (LAD) occlusion and 3 h reperfusion received 0.
Introduction: Exposure to isoflurane before and during early reperfusion protects against myocardial infarction by activating phosphatidylinositol-3-kinase (PI3K)-mediated signaling. The apoptotic protein, p53, is regulated by PI3K, and inhibition of p53 protects against ischemic injury. We tested the hypothesis that p53 inhibition lowers the threshold of isoflurane-induced postconditioning in vivo.
View Article and Find Full Text PDFIntroduction: Female gender confers cardioprotection against ischemia-reperfusion injury, in part because estrogen enhances nitric oxide production by endothelial nitric oxide synthase (eNOS). Whether ischemic preconditioning occurs in females remains controversial. Delayed myocardial preconditioning by isoflurane is mediated by eNOS in male rabbits, but whether females are similarly protected by isoflurane is unknown.
View Article and Find Full Text PDFBrief exposure to isoflurane or repetitive, transient ischemia during early reperfusion after prolonged coronary artery occlusion protects against myocardial infarction by inhibiting the mitochondrial permeability transition pore (mPTP). Inhibition of mPTP during delayed ischemic preconditioning occurred concomitant with enhanced expression of the antiapoptotic protein B cell lymphoma-2 (Bcl-2). We tested the hypothesis that Bcl-2 mediates myocardial protection by isoflurane or brief ischemic episodes during reperfusion in rabbits (n = 91) subjected to a 30-min left anterior descending coronary artery occlusion followed by 3 h reperfusion.
View Article and Find Full Text PDFInhibition of glycogen synthase kinase (GSK)-beta protects against ischemia-reperfusion injury. Brief exposure to isoflurane before and during early reperfusion after coronary artery occlusion also protects against infarction. Whether GSK-beta mediates this action is unknown.
View Article and Find Full Text PDF