Cytochrome P450 (CYP)4Z1, a highly expressed gene in breast cancer, was one of the last CYPs to be identified in the human genome, some 20 years ago. CYP4 enzymes typically catalyze -hydroxylation and metabolize 3 and 6 polyunsaturated fatty acids to bioactive lipid metabolites that can influence tumor growth and metastasis. These attributes of CYP4Z1 make it an attractive target for new chemotherapeutic drug design, as a potential biomarker for selection of patients that might respond favorably to drugs and for developing enzyme inhibitors as potential therapeutic agents.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
December 2023
Heme B is a critical prosthetic group for the function of numerous proteins including the cytochrome P450 (CYP) family of enzymes. CYP enzymes are involved in the metabolism of endogenous and xenobiotic molecules that are of central interest in drug development. Formation of reactive metabolites by CYPs can lead to heme modification and destruction of the enzyme.
View Article and Find Full Text PDFEstablishing the two stereocenters in the benzothiazepine ring of linerixibat (GSK2330672) has been a long-standing problem at GSK. Our solution rests on an episulfonium-controlled Ritter reaction followed by a sulfoxide-directed reduction. A rationale for both steps is based on a mixture of literature precedent and computational experiments.
View Article and Find Full Text PDFPhotoredox-transition metal dual catalysis provides a unique platform for constructing -rich chemical matter. Here, we report a nickel-catalyzed cross-coupling of commercially available or easily prepared redox-active NHP azetidine-2-carboxylates with commercially available heteroaryl iodides to yield 2-heteroaryl azetidines. This "off-the-shelf" approach yielded products amenable to diversification giving access to novel saturated heterocyclic scaffolds useful for medicinal chemistry programs.
View Article and Find Full Text PDFCYP2C9 encodes a cytochrome P450 enzyme responsible for metabolizing up to 15% of small molecule drugs, and CYP2C9 variants can alter the safety and efficacy of these therapeutics. In particular, the anti-coagulant warfarin is prescribed to over 15 million people annually and polymorphisms in CYP2C9 can affect individual drug response and lead to an increased risk of hemorrhage. We developed click-seq, a pooled yeast-based activity assay, to test thousands of variants.
View Article and Find Full Text PDF8-[(1H-1,2,3-benzotriazol-1-yl)amino]octanoic acid (8-BOA) was recently identified as a selective and potent mechanism-based inactivator (MBI) of breast cancer-associated CYP4Z1 and exhibited favourable inhibitory activity thus meriting characterization.The pharmacokinetics and metabolism of 8-BOA in rats was examined after a single IV bolus dose of 10 mg/kg. A biphasic time-concentration profile resulted in relatively low clearance and a prolonged elimination half-life.
View Article and Find Full Text PDFA novel oxidative activation of a thiolactam was developed for the preparation of methyltriazolo[1,4]benzodiazepine in a single step. A sulfenic acid (R-SOH) was proposed as the activated intermediate with the concurrent formation of acetylhydrazone from acethydrazide and cyclocondensation to the triazole. A version of the method with 35% peracetic acid was scaled up to 40 kg as a part of the new route for the synthesis of BET inhibitor molibresib (GSK525762).
View Article and Find Full Text PDFCYP2C9 is a major form of human liver cytochrome P450 that is responsible for the oxidative metabolism of several widely used low-therapeutic index drugs, including ()-warfarin and phenytoin. In a cohort of Alaska Native people, ultrarare or novel CYP2C9 protein variants, M1L (rs114071557), N218I (rs780801862), and P279T (rs182132442, CYP2C9*29), are expressed with higher frequencies than the well characterized and alleles. We report here on their relative expression in lentivirus-infected HepG2 cells and the functional characterization of purified reconstituted enzyme variants expressed in toward ()-warfarin, phenytoin, flurbiprofen, and ()-naproxen.
View Article and Find Full Text PDFMammary-tissue-restricted cytochrome P450 4Z1 (CYP4Z1) has garnered interest for its potential role in breast cancer progression. CYP4Z1-dependent metabolism of arachidonic acid preferentially generates 14,15-epoxyeicosatrienoic acid (14,15-EET), a metabolite known to influence cellular proliferation, migration, and angiogenesis. In this study, we developed time-dependent inhibitors of CYP4Z1 designed as fatty acid mimetics linked to the bioactivatable pharmacophore, 1-aminobenzotriazole ().
View Article and Find Full Text PDFCYP4B1 is an enigmatic mammalian cytochrome P450 monooxygenase acting at the interface between xenobiotic and endobiotic metabolism. A prominent CYP4B1 substrate is the furan pro-toxin 4-ipomeanol (IPO). Our recent investigation on metabolism of IPO related compounds that maintain the furan functionality of IPO while replacing its alcohol group with alkyl chains of varying structure and length revealed that, in addition to cytotoxic reactive metabolite formation (resulting from furan activation) non-cytotoxic ω-hydroxylation at the alkyl chain can also occur.
View Article and Find Full Text PDFBiomed Instrum Technol
June 2019
A convergent eight-stage synthesis of the boron-containing NS5B inhibitor GSK8175 is described. The previous route involves 13 steps in a completely linear sequence, with an overall 10% yield. Key issues include a multiday SAr arylation of a secondary sulfonamide using HMPA as solvent, multiple functional group interconversions after all of the carbon atoms are installed (including a Sandmeyer halogenation), use of carcinogenic chloromethyl methyl ether to install a protecting group late in the synthesis, and an unreliable Pd-catalyzed Miyaura borylation as the penultimate step.
View Article and Find Full Text PDFCYP4Z1 is an "orphan" cytochrome P450 (P450) enzyme that has provoked interest because of its hypothesized role in breast cancer through formation of the signaling molecule 20-hydroxyeicosatetraenoic acid (20-HETE). We expressed human CYP4Z1 in and evaluated its catalytic capabilities toward arachidonic and lauric acids (AA and LA). Specific and sensitive mass spectrometry assays enabled discrimination of the regioselectivity of hydroxylation of these two fatty acids.
View Article and Find Full Text PDFCommon terminal sterilization methods are known to alter the natural structure and properties of soft tissues. One approach to providing safe grafts with preserved biological properties is the combination of a validated chemical sterilization process followed by an aseptic packaging process. This combination of processes is an accepted method for production of sterile healthcare products as described in ANSI/AAMI ST67:2011.
View Article and Find Full Text PDFRecent studies have demonstrated that genetically modified hematopoietic stem cells (HSCs) can reduce HIV viremia. We have developed an HIV/AIDS-patient model in Simian/human immunodeficiency virus (SHIV)-infected pigtailed macaques that are stably suppressed on antiretroviral therapy (ART: raltegravir, emtricitabine and tenofovir). Following SHIV infection and ART, animals undergo autologous HSC transplantation (HSCT) with lentivirally transduced cluster of differentiation (CD)34(+) cells expressing the mC46 anti-HIV fusion protein.
View Article and Find Full Text PDFInsertional mutagenesis resulting from the integration of retroviral vectors has led to the discovery of many oncogenes associated with leukemia. We investigated the role of HOXC6, identified by proximal provirus integration in a large animal hematopoietic stem cell gene therapy study, for a potential involvement in hematopoietic stem cell activity and hematopoietic cell fate decision. HOXC6 was overexpressed in the murine bone marrow transplantation model and tested in a competitive repopulation assay in comparison to the known hematopoietic stem cell expansion factor, HOXB4.
View Article and Find Full Text PDFThe combination of genetic modification and hematopoietic stem cell (HSC) transplantation may provide the necessary means to develop an alternative treatment option to conventional antiretroviral therapy. As HSCs give rise to all hematopoietic cell types susceptible to HIV infection, modification of HSCs is an ideal strategy for the development of infection-resistant immune cell populations. Although promising results have been obtained in multiple animal models, additional evidence is needed to convincingly demonstrate the feasibility of this approach as a treatment of HIV-1 infected patients.
View Article and Find Full Text PDFThe cure of a human immunodeficiency virus (HIV)-1-infected patient following allogeneic transplantation from a CCR5-null donor and potential cure of two patients transplanted with CCR5 wild-type hematopoietic stem cells (HSC) have provided renewed optimism that a potential alternative to conventional antiretroviral therapy (ART) is forthcoming. While allogeneic grafts have thus far suggested complete eradication of viral reservoirs, it has yet to be observed following autologous HSC transplantation. Development of curative autologous transplantation strategies would significantly increase the number of treatable patients, eliminating the need for matched donors and reducing the risks of adverse events.
View Article and Find Full Text PDFDespite continued progress in the development of novel antiretroviral therapies, it has become increasingly evident that drug-based treatments will not lead to a functional or sterilizing cure for HIV(+) patients. In 2009, an HIV(+) patient was effectively cured of HIV following allogeneic transplantation of hematopoietic stem cells (HSCs) from a CCR5(-/-) donor. The utility of this approach, however, is severely limited because of the difficulty in finding matched donors.
View Article and Find Full Text PDFInduced pluripotent stem cell (iPSC) therapeutics are a promising treatment for genetic and infectious diseases. To assess engraftment, risk of neoplastic formation, and therapeutic benefit in an autologous setting, testing iPSC therapeutics in an appropriate model, such as the pigtail macaque (Macaca nemestrina; Mn), is crucial. Here, we developed a chemically defined, scalable, and reproducible specification protocol with bone morphogenetic protein 4, prostaglandin-E2 (PGE2), and StemRegenin 1 (SR1) for hematopoietic differentiation of Mn iPSCs.
View Article and Find Full Text PDF