Publications by authors named "John Kong-a San"

In spite of the emergence of genome editing tools, ES cell mediated transgenesis remains the most controllable way of creating genetically modified animals. Although tetraploid (4N) complementation of 4N host embryos and ES cells, is the only method guaranteeing that offspring are entirely ES cell derived, this technique is challenging, not always successful and difficult to implement in some laboratory settings. The current study shows that pretreatment of host blastocysts with FGF4 prior to ES cell injection can provide an alternative method for the generation of animals displaying high rates of chimaerism.

View Article and Find Full Text PDF

The human β-globin locus contains the β-like globin genes (i.e. fetal γ-globin and adult β-globin), which heterotetramerize with α-globin subunits to form fetal or adult hemoglobin.

View Article and Find Full Text PDF

Background: To facilitate the in vivo study of esophageal (stem) cell biology in homeostasis and cancer, novel mouse models are necessary to elicit expression of candidate genes in a tissue-specific and inducible fashion. To this aim, we developed and studied a mouse model to allow labeling of esophageal cells with the histone 2B-GFP (H2B-GFP) fusion protein.

Results: First, we generated a transgenic mouse model expressing the reverse tetracycline transactivator rtTA2-M2 under control of the promoter (ED-L2) of the Epstein-Barr virus (EBV) gene encoding the latent membrane protein-1 (LMP-1).

View Article and Find Full Text PDF

SUMO modification of transcription factors is linked to repression of transcription. The physiological significance of SUMO attachment to a particular transcriptional regulator, however, is largely unknown. We have employed the ubiquitously expressed murine transcription factor Sp3 to analyze the role of SUMOylation in vivo.

View Article and Find Full Text PDF

The transcription factor Runx1/AML1 is an important regulator of hematopoiesis and is critically required for the generation of the first definitive hematopoietic stem cells (HSCs) in the major vasculature of the mouse embryo. As a pivotal factor in HSC ontogeny, its transcriptional regulation is of high interest but is largely undefined. In this study, we used a combination of comparative genomics and chromatin analysis to identify a highly conserved 531-bp enhancer located at position + 23.

View Article and Find Full Text PDF

We have generated transgenic mice containing hybrid llama/human antibody loci that contain two llama variable regions and the human D, J, and Cmu and/or Cgamma constant regions. Such loci rearrange productively and rescue B cell development efficiently without LC rearrangement. Heavy-chain-only antibodies (HCAb) are expressed at high levels, provided that the CH1 domain is deleted from the constant regions.

View Article and Find Full Text PDF

Objective: Persistent expression of the human fetal gamma-globin genes in the adult stage is often associated with naturally occurring deletions in the human beta-globin locus. The mapping of the 5' breakpoints of these deletions within the Agamma- to delta-globin intergenic region has suggested that regulatory elements involved in the silencing of the gamma-globin genes in the adult may be present. We previously identified two elements in this region, termed Enh and F, located 3' to the Agamma-globin gene acting as silencers in transient transfection assays.

View Article and Find Full Text PDF

The Sca-1 surface glycoprotein is used routinely as a marker for haematopoietic stem cell enrichment. Two allelic genes, Ly-6A and Ly-6E, encode this marker and appear to be differentially regulated in haematopoietic cells and haematopoietic stem cells. The Sca-1 protein has been shown to be expressed at a greater frequency in these cells from Ly-6A strains of mice.

View Article and Find Full Text PDF