Publications by authors named "John Kolman"

In the past three decades, the use of tumorigenic cell substrates has been the topic of five Vaccine and Related Biological Products Advisory Committee (VRBPAC) meetings, including a review of the A549 cell line in September 2012. Over that period of time, major technological advances in biotechnology have improved our ability to assess the risk associated with using a tumorigenic cell line. As part of the September 2012 review, we assessed the history of A549 cells and evaluated the probable transforming event based on patterns of mutations to cancer genes.

View Article and Find Full Text PDF

REOLYSIN (pelareorep) is a proprietary isolate of the reovirus T3D (Type 3 Dearing) strain which is currently being tested in clinical trials as an anticancer therapeutic agent. Reovirus genomes are composed of ten segments of double-stranded ribonucleic acid (RNA) characterized by genome size: large (L1, L2, and L3), medium (M1, M2, and M3), and small (S1, S2, S3, and S4). The objective of this work was to evaluate the homogeneity and genetic stability of REOLYSIN.

View Article and Find Full Text PDF

California sea lions are one of the major marine mammal species along the Pacific coast of North America. Sea lions are susceptible to a wide variety of viruses, some of which can be transmitted to or from terrestrial mammals. Using an unbiased viral metagenomic approach, we surveyed the fecal virome in California sea lions of different ages and health statuses.

View Article and Find Full Text PDF

There has been an upsurge of interest in developing new veterinary and human vaccines and, in turn, this has involved the development of new mammalian and insect cell substrates. Excluding adventitious agents from these cells can be problematic, particularly for cells derived from species with limited virological investigation. Massively parallel sequencing is a powerful new method for the identification of viruses and other adventitious agents, without prior knowledge of the nature of the agent.

View Article and Find Full Text PDF

Comparative analysis of mutants using transfection is complicated by clones exhibiting variable levels of gene expression due to copy number differences and genomic position effects. Recombinase-mediated cassette exchange (RMCE) can overcome these problems by introducing the target gene into pre-determined chromosomal loci, but recombination between the available recombinase targeting sites can reduce the efficiency of targeted integration. We developed a new LoxP site (designated L3), which when used with the original LoxP site (designated L2), allows highly efficient and directional replacement of chromosomal DNA with incoming DNA.

View Article and Find Full Text PDF

The origin of DNA replication in the human beta-globin gene contains an initiation region (IR) and two flanking auxiliary elements. Two replicator modules are located within the upstream auxiliary sequence and the IR core, but the functional sequences in the downstream auxiliary element are unknown. Here, we use a combination of benzoylated-naphthoylated DEAE (BND) cellulose purification and nascent strand abundance assays to show that replication initiation occurs at the beta-globin 3' enhancer on human chromosome 11 in the Hu11 hybrid murine erythroleukemia (MEL) cell line.

View Article and Find Full Text PDF

Epstein-Barr Virus (EBV) infects resting B cells, within which it establishes latency as a stable, circular episome with only two EBV components, the cis element oriP and the latently expressed protein EBNA1. It is believed that EBNA1's ability to tether oriP episomes to metaphase chromosomes is required for its stable replication. We created fusions between the DNA-binding domain (DBD) of EBNA1 and the cellular chromatin-binding proteins HMGA1a and HMG1 to determine the minimal requirements for stable maintenance of an oriP-based episome.

View Article and Find Full Text PDF