Publications by authors named "John Kolega"

Stiffened arteries are a pathology of atherosclerosis, hypertension, and coronary artery disease and a key risk factor for cardiovascular disease events. The increased stiffness of arteries triggers a phenotypic switch, hypermigration, and hyperproliferation of vascular smooth muscle cells (VSMCs), leading to neointimal hyperplasia and accelerated neointima formation. However, the mechanism underlying this trigger remains unknown.

View Article and Find Full Text PDF

Vascular dysfunction is a common cause of cardiovascular diseases characterized by the narrowing and stiffening of arteries, such as atherosclerosis, restenosis, and hypertension. Arterial narrowing results from the aberrant proliferation of vascular smooth muscle cells (VSMCs) and their increased synthesis and deposition of extracellular matrix (ECM) proteins. These, in turn, are modulated by arterial stiffness, but the mechanism for this is not fully understood.

View Article and Find Full Text PDF

Machine learning approaches have shown great promise in biology and medicine discovering hidden information to further understand complex biological and pathological processes. In this study, we developed a deep learning-based machine learning algorithm to meaningfully process image data and facilitate studies in vascular biology and pathology. Vascular injury and atherosclerosis are characterized by neointima formation caused by the aberrant accumulation and proliferation of vascular smooth muscle cells (VSMCs) within the vessel wall.

View Article and Find Full Text PDF

Background: Intracranial aneurysm (IA) rupture leads to deadly subarachnoid hemorrhages. However, the mechanisms leading to rupture remain poorly understood. Altered gene expression within IA tissue is linked to the pathobiology of aneurysm development and progression.

View Article and Find Full Text PDF

Changes in blood flow can induce arterial remodeling. Intimal cells sense flow and send signals to the media to initiate remodeling. However, the nature of such intima-media signaling is not fully understood.

View Article and Find Full Text PDF

Hemodynamics plays a key role in the natural history of intracranial aneurysms (IAs). However, studies exploring the association between aneurysmal hemodynamics and the biological and mechanical characteristics of the IA wall in humans are sparse. In this review, we survey the current body of literature, summarize the studies' methodologies and findings, and assess the degree of consensus among them.

View Article and Find Full Text PDF

The pathogenesis and natural history of intracranial aneurysm (IA) remains poorly understood. To this end, animal models with induced cerebral vessel lesions mimicking human aneurysms have provided the ability to greatly expand our understanding. In this review, we comprehensively searched the published literature to identify studies that endogenously induced IA formation in animals.

View Article and Find Full Text PDF

Background: Due to the scarcity of longitudinal data, the morphologic development of intracranial aneurysms (IAs) during their natural history remains poorly understood. However, longitudinal information can often be inferred from cross-sectional datasets as demonstrated by anatomists' use of geometric morphometrics to build evolutionary trees, reconstructing species inter-relationships based on morphologic landmarks.

Objective: We adopted these tools to analyze cross-sectional image data and infer relationships between IA morphologies.

View Article and Find Full Text PDF

Background: The rupture of an intracranial aneurysm (IA) causes devastating subarachnoid hemorrhages, yet most IAs remain undiscovered until they rupture. Recently, we found an IA RNA expression signature of circulating neutrophils, and used transcriptome data to build predictive models for unruptured IAs. In this study, we evaluate the feasibility of using whole blood transcriptomes to predict the presence of unruptured IAs.

View Article and Find Full Text PDF

Background: Intracranial aneurysms (IAs) are dangerous because of their potential to rupture. We previously found significant RNA expression differences in circulating neutrophils between patients with and without unruptured IAs and trained machine learning models to predict presence of IA using 40 neutrophil transcriptomes. Here, we aim to develop a predictive model for unruptured IA using neutrophil transcriptomes from a larger population and more robust machine learning methods.

View Article and Find Full Text PDF

Background: Genetics play an important role in intracranial aneurysm (IA) pathophysiology. Genome-wide association studies have identified several single nucleotide polymorphisms (SNPs) that are linked to IA but how they affect disease pathobiology remains poorly understood. We used Encyclopedia of DNA Elements (ENCODE) data to investigate the epigenetic landscapes surrounding genetic risk loci to determine if IA-associated SNPs affect functional elements that regulate gene expression and if those SNPs are most likely to impact a specific type of cells.

View Article and Find Full Text PDF

Background: Intracranial aneurysms (IAs) are dangerous because of their potential to rupture and cause deadly subarachnoid hemorrhages. Previously, we found significant RNA expression differences in circulating neutrophils between patients with unruptured IAs and aneurysm-free controls. Searching for circulating biomarkers for unruptured IAs, we tested the feasibility of developing classification algorithms that use neutrophil RNA expression levels from blood samples to predict the presence of an IA.

View Article and Find Full Text PDF

Background: The neurovasculature dynamically responds to changes in cerebral blood flow by vascular remodeling processes. Serial imaging studies in mouse models could help characterize pathologic and physiologic flow-induced remodeling of the Circle of Willis (CoW).

Method: We induced flow-driven pathologic cerebral vascular remodeling in the CoW of mice (n=3) by ligation of the left Common Carotid Artery (CCA), and the right external carotid and pterygopalatine arteries, increasing blood flow through the basilar and the right internal carotid arteries.

View Article and Find Full Text PDF

Background: Unruptured intracranial aneurysms (IAs) are typically asymptomatic and undetected except for incidental discovery on imaging. Blood-based diagnostic biomarkers could lead to improvements in IA management. This exploratory study examined circulating neutrophils to determine whether they carry RNA expression signatures of IAs.

View Article and Find Full Text PDF

Bilateral common carotid artery (CCA) ligation in rabbits is a model for basilar terminus (BT) aneurysm formation. We asked if this model could be replicated in rats. Fourteen female Sprague Dawley rats underwent bilateral CCA ligation (n=8) or sham surgery (n=6).

View Article and Find Full Text PDF

Increased cerebral blood flow has been shown to induce pathological structural changes in the Circle of Willis (CoW) in experimental models. Previously, we reported flow-induced aneurysm-like remodeling in the CoW secondary to flow redistribution after bilateral common carotid artery (CCA) ligation in rabbits. In the current study, we tested the hypothesis that loading rabbits with biological risk factors for vascular disease would increase flow-induced aneurysmal remodeling in the CoW.

View Article and Find Full Text PDF

Background: Hemodynamic insults at arterial bifurcations are believed to play a critical role in initiating intracranial aneurysms. Recent studies in a rabbit model indicate that aneurysmal damage initiates under specific wall shear stress conditions when smooth muscle cells (SMCs) become pro-inflammatory and produce matrix metalloproteinases (MMPs). The mechanisms leading to SMC activation and MMP production during hemodynamic aneurysm initiation are unknown.

View Article and Find Full Text PDF

Carotid occlusions are associated with de novo intracranial aneurysm formation in clinical case reports, but this phenomenon is not widely studied. We performed bilateral carotid ligation (n=9) in rabbits to simulate carotid occlusion, and sham surgery (n=3) for control. Upon euthanasia (n=3 at 5 days, n=6 at 6 months post ligation, and n=3 at 5 days after sham operation), vascular corrosion casts of the circle of Willis (CoW) were created.

View Article and Find Full Text PDF

Background: Intracranial aneurysm initiation is poorly understood, although hemodynamic insult is believed to play an important role in triggering the pathology. It has recently been found in a rabbit model that while macrophages are absent during hemodynamic aneurysm initiation, matrix metalloproteinases (MMPs) are elevated and co-localize with smooth muscle cells (SMCs). This study investigates whether SMCs play a mechanistic role in aneurysm initiation triggered by hemodynamics.

View Article and Find Full Text PDF

Flow impingement at arterial bifurcations causes high frictional force [or wall shear stress (WSS)], and flow acceleration and deceleration in the branches create positive and negative streamwise gradients in WSS (WSSG), respectively. Intracranial aneurysms tend to form in regions with high WSS and positive WSSG. However, little is known about the responses of endothelial cells (ECs) to either positive or negative WSSG under high WSS conditions.

View Article and Find Full Text PDF

Background: Intracranial aneurysms (IAs) occur more frequently at certain bifurcations than at others. Hemodynamic stress, which promotes aneurysm formation in animal models, also differs among bifurcations, depending on flow and vessel geometry.

Objective: To determine whether locations that are more likely to develop IAs experience different hemodynamic stresses that might contribute to higher IA susceptibility.

View Article and Find Full Text PDF

Cardiovascular pathologies such as intracranial aneurysms (IAs) and atherosclerosis preferentially localize to bifurcations and curvatures where hemodynamics are complex. While extensive knowledge about low wall shear stress (WSS) has been generated in the past, due to its strong relevance to atherogenesis, high WSS (typically >3 Pa) has emerged as a key regulator of vascular biology and pathology as well, receiving renewed interests. As reviewed here, chronic high WSS not only stimulates adaptive outward remodeling, but also contributes to saccular IA formation (at bifurcation apices or outer curves) and atherosclerotic plaque destabilization (in stenosed vessels).

View Article and Find Full Text PDF

Background Information: Most cells reside in vivo in a three-dimensional (3D) environment surrounded by extracellular matrix and other neighbouring cells, conditions that are different from those found by cells cultured in vitro on two-dimensional (2D) substrata. Cell morphology and behaviour are very different under these two different conditions, but the structural basis for these differences is still not understood, especially the role of microtubules (MTs). To address this issue, we studied the early spreading behaviour of bovine aortic endothelial cells (BAECs) cultured in 3D collagen matrices and on 2D substrata, in the presence of MT-disrupting drugs.

View Article and Find Full Text PDF

Chronic high flow can induce arterial remodeling, and this effect is mediated by endothelial cells (ECs) responding to wall shear stress (WSS). To assess how WSS above physiological normal levels affects ECs, we used DNA microarrays to profile EC gene expression under various flow conditions. Cultured bovine aortic ECs were exposed to no-flow (0 Pa), normal WSS (2 Pa), and very high WSS (10 Pa) for 24 h.

View Article and Find Full Text PDF

Objective: Computational fluid dynamics (CFD) simulations of intracranial aneurysm hemodynamics usually adopt the simplification of the Newtonian blood rheology model. A study was undertaken to examine whether such a model affects the predicted hemodynamics in realistic intracranial aneurysm geometries.

Methods: Pulsatile CFD simulations were carried out using the Newtonian viscosity model and two non-Newtonian models (Casson and Herschel-Bulkley) in three typical internal carotid artery saccular aneurysms (A, sidewall, oblong-shaped with a daughter sac; B, sidewall, quasi-spherical; C, near-spherical bifurcation).

View Article and Find Full Text PDF