The concept of Federated Learning (FL) is a distributed-based machine learning (ML) approach that trains its model using edge devices. Its focus is on maintaining privacy by transmitting gradient updates along with users' learning parameters to the global server in the process of training as well as preserving the integrity of data on the user-end of internet of medical things (IoMT) devices. Instead of a direct use of user data, the training which is performed on the global server is done on the parameters while the model modification is performed locally on IoMT devices.
View Article and Find Full Text PDF