Severe burn injury results in substantial skin loss and cannot be treated by autografts. The Integra Dermal Regeneration Template (IDRT) is the leading synthetic skin substitute because it allows for wound bed regeneration and wound healing. However, all substitutes suffer from slow blood vessel ingrowth and would benefit considerably from enhanced vascularization to nurture tissue repair.
View Article and Find Full Text PDFBackground: Bioabsorbable unfilled synthetic nerve conduits have been used in the reconstruction of small segmental nerve defects with variable results, especially in motor nerves. We hypothesized that providing a synthetic mimic of the Schwann cell basal lamina in the form of a collagen-glycosaminoglycan (GAG) matrix would improve the bridging of the nerve gap and functional motor recovery.
Methods: A unilateral 10-mm sciatic nerve defect was created in eighty-eight male Lewis rats.
Tight control of pore architecture in porous scaffolds for bone repair is critical for a fully elucidated tissue response. Solid freeform fabrication (SFF) enables construction of scaffolds with tightly controlled pore architecture. Four types of porous scaffolds were constructed using SFF and evaluated in an 8-mm rabbit trephine defect at 8 and 16 weeks (n = 6): a lactide/glycolide (50:50) copolymer scaffold with 20% w/w tri-calcium phosphate and random porous architecture (Group 1); another identical design made from poly(desaminotyrosyl-tyrosine ethyl ester carbonate) [poly(DTE carbonate)], a tyrosine-derived pseudo-polyamino acid (Group 2); and two poly(DTE carbonate) scaffolds containing 500 microm pores separated by 500-microm thick walls, one type with solid walls (Group 3), and one type with microporous walls (Group 4).
View Article and Find Full Text PDF