Publications by authors named "John K Stockton"

We experimentally investigate the performance of a commercial tapered amplifier diode operating in a pulsed-current mode with a peak current that is significantly higher than the specified maximum continuous current. For a tapered amplifier rated at 500 mW of continuous power, we demonstrate 2.6 W of peak optical output power with 15 mW of injection light for 200 micros, 7 A current pulses.

View Article and Find Full Text PDF

We demonstrate that quantum nondemolition measurement, combined with a suitable parameter estimation procedure, can improve the sensitivity of a broadband atomic magnetometer by reducing uncertainty due to spin projection noise. Furthermore, we provide evidence that real-time quantum feedback control offers robustness to classical uncertainties, including shot-to-shot atom number fluctuations, that would otherwise prevent quantum-limited performance.

View Article and Find Full Text PDF

Real-time feedback performed during a quantum nondemolition measurement of atomic spin-angular momentum allowed us to influence the quantum statistics of the measurement outcome. We showed that it is possible to harness measurement backaction as a form of actuation in quantum control, and thus we describe a valuable tool for quantum information science. Our feedback-mediated procedure generates spin-squeezing, for which the reduction in quantum uncertainty and resulting atomic entanglement are not conditioned on the measurement outcome.

View Article and Find Full Text PDF

The shot-noise detection limit in current high-precision magnetometry [Nature (London) 422, 596 (2003)] is a manifestation of quantum fluctuations that scale as 1/sqrt[N] in an ensemble of N atoms. Here, we develop a procedure that combines continuous measurement and quantum Kalman filtering [Rep. Math.

View Article and Find Full Text PDF

We present an experimental demonstration of the power of feedback in quantum metrology, confirming the predicted [H. M. Wiseman, Phys.

View Article and Find Full Text PDF