Rationale: A new multi-electrode array-based application for the long-term recording of action potentials from electrogenic cells makes possible exciting cardiac electrophysiology studies in health and disease. With hundreds of simultaneous electrode recordings being acquired over a period of days, the main challenge becomes achieving reliable signal identification and quantification.
Objective: We set out to develop an algorithm capable of automatically extracting regions of high-quality action potentials from terabyte size experimental results and to map the trains of action potentials into a low-dimensional feature space for analysis.