Publications by authors named "John Jia En Chua"

The redox process and cellular senescence are involved in a range of essential physiological functions. However, they are also implicated in pathological processes underlying age-related neurodegenerative disorders, including Alzheimer's disease (AD). Elevated levels of reactive oxygen species (ROS) are generated as a result of abnormal accumulation of beta-amyloid peptide (Aβ), tau protein, and heme dyshomeostasis and is further aggravated by mitochondria dysfunction and endoplasmic reticulum (ER) stress.

View Article and Find Full Text PDF

Mutations in the human fasciculation and elongation protein zeta 1 ( gene are found in schizophrenia and Jacobsen syndrome patients. Here, using human cerebral organoids (hCOs), we show that expression is turned on early during brain development and is detectable in both neuroprogenitor subtypes and immature neurons. FEZ1 deletion disrupts expression of neuronal and synaptic development genes.

View Article and Find Full Text PDF

Present day strategies for delivery of wireless photodynamic therapy (PDT) to deep-seated targets are limited by the inadequacy of irradiance and insufficient therapeutic depth. Here we report the design and preclinical validation of a flexible wireless upconversion nanoparticle (UCNP) implant (SIRIUS) that is capable of large field, high intensity illumination for PDT of deep-seated tumors. The implant achieves this by incorporating submicrometer core-shell-shell NaYF UCNPs into its design, which significantly enhances upconversion efficiency and mitigates light loss from surface quenching.

View Article and Find Full Text PDF

Oncogenic mutations in the RAS family of small GTPases are commonly found in human cancers and they promote tumorigenesis by altering gene expression networks. We previously demonstrated that Casein Kinase 1α (CK1α), a member of the CK1 family of serine/threonine kinases, is post-transcriptionally upregulated by oncogenic RAS signaling. Here, we report that the CK1α mRNA contains an exceptionally long 5'-untranslated region (UTR) harbouring several translational control elements, implicating its involvement in translational regulation.

View Article and Find Full Text PDF

Alzheimer's Disease (AD) is a progressive neurodegenerative disorder that gradually impairs memory, cognition and the ability to perform simple daily tasks. It is the most prevalent form of dementia in the elderly and its incidence increases exponentially with age. Neuronal and synapse loss, key hallmarks of the disorder, are widely regarded to occur early during the onset of AD, and the extent of this loss closely correlates with the progression of cognitive decline and dysfunction of the underlying neuronal circuity.

View Article and Find Full Text PDF

Hand, foot and mouth disease (HFMD) caused by Human Enterovirus A71 (HEVA71) infection is typically a benign infection. However, in minority of cases, children can develop severe neuropathology that culminate in fatality. Approximately 36.

View Article and Find Full Text PDF

The human brain contains an estimated 100 billion neurons that must be systematically organized into functional neural circuits for it to function properly. These circuits range from short-range local signaling networks between neighboring neurons to long-range networks formed between various brain regions. Compelling converging evidence indicates that alterations in neural circuits arising from abnormalities during early neuronal development or neurodegeneration contribute significantly to the etiology of neurological disorders.

View Article and Find Full Text PDF

Elaboration of neuronal processes is an early step in neuronal development. Guidance cues must work closely with intracellular trafficking pathways to direct expanding axons and dendrites to their target neurons during the formation of neuronal networks. However, how such coordination is achieved remains incompletely understood.

View Article and Find Full Text PDF
Article Synopsis
  • In 2008, guidelines were established for researching autophagy, which has since gained significant interest and new technologies, necessitating regular updates to monitoring methods across various organisms.
  • The new guidelines emphasize selecting appropriate techniques to evaluate autophagy while noting that no single method suits all situations; thus, a combination of methods is encouraged.
  • The document highlights that key proteins involved in autophagy also impact other cellular processes, suggesting genetic studies should focus on multiple autophagy-related genes to fully understand these pathways.
View Article and Find Full Text PDF

FEZ1-mediated axonal transport plays important roles in central nervous system development but its involvement in the peripheral nervous system is not well-characterized. FEZ1 is deleted in Jacobsen syndrome (JS), an 11q terminal deletion developmental disorder. JS patients display impaired psychomotor skills, including gross and fine motor delay, suggesting that FEZ1 deletion may be responsible for these phenotypes, given its association with the development of motor-related circuits.

View Article and Find Full Text PDF

The potent costimulatory effect of CD137 has been implicated in several murine autoimmune disease models. CD137 costimulates and polarizes antigen-specific T cells toward a potent Th1/Tc1 response, and is essential for the development of experimental autoimmune encephalomyelitis (EAE), a murine model of Multiple Sclerosis (MS). This study aimed to investigate a role of CD137 in MS.

View Article and Find Full Text PDF

Synapses are fundamental information-processing units of the brain, and synaptic dysregulation is central to many brain disorders ("synaptopathies"). However, systematic annotation of synaptic genes and ontology of synaptic processes are currently lacking. We established SynGO, an interactive knowledge base that accumulates available research about synapse biology using Gene Ontology (GO) annotations to novel ontology terms: 87 synaptic locations and 179 synaptic processes.

View Article and Find Full Text PDF

Elevated iron deposition has been reported in Parkinson's disease (PD). However, the route of iron uptake leading to high deposition in the substantia nigra is unresolved. Here, we show a mechanism in enhanced Fe uptake via S-nitrosylation of divalent metal transporter 1 (DMT1).

View Article and Find Full Text PDF

Arachidonic acid and docosahexaenoic acid (DHA) released by the action of phospholipases A (PLA) on membrane phospholipids may be metabolized by lipoxygenases to the anti-inflammatory mediators lipoxin A4 (LXA4) and resolvin D1 (RvD1), and these can bind to a common receptor, formyl-peptide receptor 2 (FPR2). The contribution of this receptor to axonal or dendritic outgrowth is unknown. The present study was carried out to elucidate the distribution of FPR2 in the rat CNS and its role in outgrowth of neuronal processes.

View Article and Find Full Text PDF

Adenosine DeAminases acting on RNA (ADAR) catalyzes adenosine-to-inosine (A-to-I) conversion within RNA duplex structures. While A-to-I editing is often dynamically regulated in a spatial-temporal manner, the mechanisms underlying its tissue-selective restriction remain elusive. We have previously reported that transcripts of voltage-gated calcium channel CaV1.

View Article and Find Full Text PDF

Sphingomyelinases are a family of enzymes that hydrolyze sphingomyelin to generate phosphocholine and ceramide. The brain distribution and function of neutral sphingomyelinase 2 (nSMase2) were elucidated in this study. nSMase2 mRNA expression was greatest in the striatum, followed by the prefrontal cortex, hippocampus, cerebellum, thalamus, brainstem, and olfactory bulb.

View Article and Find Full Text PDF

Adapters bind motor proteins to cargoes and therefore play essential roles in Kinesin-1 mediated intracellular transport. The regulatory mechanisms governing adapter functions and the spectrum of cargoes recognized by individual adapters remain poorly defined. Here, we show that cargoes transported by the Kinesin-1 adapter FEZ1 are enriched for presynaptic components and identify that specific phosphorylation of FEZ1 at its serine 58 regulatory site is mediated by microtubule affinity-regulating kinases (MARK/PAR-1).

View Article and Find Full Text PDF

Targeted intracellular movement of presynaptic proteins plays important roles during synapse formation and, later, in the homeostatic maintenance of mature synapses. Movement of these proteins, often as vesicular packages, is mediated by motor complexes travelling along intracellular cytoskeletal networks. Presynaptic protein transport by kinesin motors in particular plays important roles during synaptogenesis to bring newly synthesized proteins to establish nascent synaptic sites.

View Article and Find Full Text PDF

Presynaptic neurotransmitter release is dominated by the synaptic vesicle (SV) cycle and entails the biogenesis, fusion, recycling, reformation or turnover of synaptic vesicles-a process involving bulk movement of membrane and proteins. As key mediators of membrane trafficking, small GTPases from the Rab family of proteins play critical roles in this process by acting as molecular switches that dynamically interact with and regulate the functions of different sets of macromolecular complexes involved in each stage of the cycle. Importantly, mutations affecting Rabs, and their regulators or effectors have now been identified that are implicated in severe neurological and neurodevelopmental disorders.

View Article and Find Full Text PDF

The release of neurotransmitters from synaptic vesicles exocytosing at presynaptic nerve terminals is a critical event in the initiation of synaptic transmission. This event occurs at specialized sites known as active zones. The task of faithfully executing various steps in the process is undertaken by careful orchestration of overlapping sets of molecular nano-machineries upon a core macromolecular scaffold situated at active zones.

View Article and Find Full Text PDF

The short coiled coil protein (SCOC) forms a complex with fasciculation and elongation protein zeta 1 (FEZ1). This complex is involved in autophagy regulation. We determined the crystal structure of the coiled coil domain of human SCOC at 2.

View Article and Find Full Text PDF