The major yolk protein (MYP) is localized to the egg and coelomic fluid of the adult sea urchin. While the egg-localized MYP has been extensively studied, much less is known about the coelomic fluid-localized protein. Therefore, we have conducted a comparative biochemical analysis of these proteins.
View Article and Find Full Text PDFSnow crab (Chionoecetes opilio) proteins have been recognized as an important source of both food and occupational allergens. While snow crab causes a significant occupational allergy, only one novel allergen has recently been fully characterized. The muscle proteins from snow crab legs were profiled by SDS-PAGE.
View Article and Find Full Text PDFThe protein tropomyosin (TM) is a known major allergen present in shellfish causing frequent food allergies. TM is also an occupational allergen generated in the working environment of snow crab (Chionoecetes opilio) processing plants. The TM protein was purified from both claw and leg meats of snow crab and analyzed by electrospray ionization and matrix-assisted laser desorption/ionization (MALDI) using hybrid quadruple time-of-flight tandem mass spectrometry (QqToF-MS).
View Article and Find Full Text PDFWe have investigated the biochemical and functional properties of toposome, a major protein component of sea urchin eggs and embryos. Atomic force microscopy was utilized to demonstrate that a Ca(2+)-driven change in secondary structure facilitated toposome binding to a lipid bilayer. Thermal denaturation studies showed that toposome was dependent upon calcium in a manner paralleling the effect of this cation on secondary and tertiary structure.
View Article and Find Full Text PDFScottish Blackface ewes from cobalt-deficient farmland were fed a diet containing 0.06 mg cobalt per kg dry matter from approximately 30 days before embryo recovery/transfer until lambing. Ewes remained untreated (-Co; n = 82) or were given an intraruminal cobalt-containing bolus to compensate for the dietary deficit (+Co; n = 82).
View Article and Find Full Text PDFThe yolk granule is the most abundant membrane-bound organelle present in sea urchin eggs and embryos. The major protein component of this organelle, toposome, accounts for approximately 50% of the total yolk protein and has been shown to be localized to the embryonic cell surface. Extensive characterization in several laboratories has defined a role for toposome in mediating membrane-membrane interactions.
View Article and Find Full Text PDFToposome, a high molecular mass protein, is an abundant component of the yolk granule in the sea urchin egg and embryo. Toposome is composed of a 160 kDa polypeptide that is proteolytically processed into smaller species of 120 and 90 kDa during embryonic development. The exact biological function of toposome during early development is unknown.
View Article and Find Full Text PDFThe hyaline layer is an apically located extraembryonic matrix, which blankets the sea urchin embryo. Using gelatin substrate gel zymography, we have identified a number of gelatin-cleaving activities within the hyaline layer and defined a precursor-product processing pathway which leads to the appearance of 40- and 38-kDa activities coincident with the loss of a 50-kDa species. Proteolytic processing of the precursor required the presence of both CaCl2 and NaCl at concentrations similar to those found in sea water.
View Article and Find Full Text PDFIn sheep, inflammation not only functions in cervical dilation at parturition, but also plays an important part in the non-pregnant ewe cervix, as demonstrated by the high level of expression of interleukin (IL)-8 at oestrus. Ewes artificially induced to ovulate have significantly lower levels of IL-8 gene expression at oestrus compared with natural oestrus, indicating an inhibition of inflammation and function, offering an explanation for the low rates of conception in vaginally inseminated synchronised ewes. To identify potential pro-inflammatory agents to combat the anti-inflammatory effects of hormonal synchronisation of oestrus, we have investigated the role of proteinase-activated receptor (PAR)-1 and PAR-2.
View Article and Find Full Text PDFThe hyaline layer (HL) is an apically located extracellular matrix (ECM) which surrounds the sea urchin embryo from the time of fertilization until metamorphosis occurs. While gelatin-cleavage activities were absent from freshly prepared hyaline layers, a dynamic pattern of activities developed in layers incubated at 15 or 37 degrees C in Millipore-filtered sea water (MFSW). Cleavage activities at 90, 55, 41, and 32 kDa were evident following incubation at either temperature.
View Article and Find Full Text PDFDev Growth Differ
April 2004
We have investigated the biochemical and functional characteristics of the major protein constituents of the yolk granule organelle present in sea urchin eggs and embryos. Compositional analysis, using sodium dodecyl sulfate polyacrylamide gel electrophoresis, revealed distinctly different polypeptide patterns under reducing and non-reducing conditions. In the presence of reducing agent, a 240 kDa species dissociated into polypeptides of apparent mol mass 160, 120 and 90 k.
View Article and Find Full Text PDFWe have examined the effects of calcium and magnesium on both the structural characteristics and the self-association reaction of hyalin, a major protein component of the sea urchin extraembryonic matrix, the hyaline layer. In the absence of calcium, the circular dichroic spectrum revealed a protein possessing a high beta sheet content. The presence of increasing concentrations of calcium resulted in an increase in beta sheet content and a coincidental decrease in alpha helix.
View Article and Find Full Text PDFWe have identified two inducible, gelatin-cleaving activities in the sea urchin extraembryonic matrix, the hyaline layer. Isolated hyaline layers, incubated in the presence of benzamidine, were devoid of gelatin-cleavage activities with apparent molecular mass less then 80k. However, when layers were incubated for 9-11 h in the absence of benzamidine, gelatin-cleavage activities, with apparent molecular mass 40- and 50k, were detected.
View Article and Find Full Text PDFThe egg storage compartment of the sea urchin embryo was investigated for a protein destined for export to the extracellular matrices. Using an antiserum prepared against a 41 kDa collagenase/gelatinase localized to the extraembryonic matrices (the hyaline layer and basal lamina), the egg storage compartment was mapped for this antigen. Indirect immunofluorescence analysis revealed the 41 kDa collagenase/gelatinase in the cortical granules as well as a second compartment which was dispersed throughout the egg cytoplasm.
View Article and Find Full Text PDFWe have purified collagen from two distinct sources; the vertebrate, rat tail tendon and an invertebrate, sea urchin adult tissue, the peristome. The collagenous nature of the purification products was confirmed by amino acid compositional analysis. Both preparations had high contents of glycine and proline residues and hydroxyproline was also present.
View Article and Find Full Text PDF