Publications by authors named "John J Tentler"

Histone deacetylases (HDACs) play critical roles in epigenomic regulation, and histone acetylation is dysregulated in many human cancers. Although HDAC inhibitors are active in T-cell lymphomas, poor isoform selectivity, narrow therapeutic indices, and a deficiency of reliable biomarkers may contribute to the lack of efficacy in solid tumors. In this article, we report the discovery and preclinical development of the novel, orally bioavailable, class-I-selective HDAC inhibitor, OKI-179.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer with high incidences of p53 mutations. AZD1775 (adavosertib, previously MK-1775) is a small molecule WEE1 inhibitor that abrogates the G2M checkpoint and can potentially synergize with DNA damaging therapies commonly used in PDAC treatment. The purpose of this study was to identify combination partners for AZD1775, including standard chemotherapy or targeted agents, in PDAC preclinical models.

View Article and Find Full Text PDF

Background: Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with limited systemic treatment options. RX-5902 is a novel anti-cancer agent that inhibits phosphorylated-p68 and thus attenuates nuclear β-catenin signaling. The purpose of this study was to evaluate the ability of β-catenin signaling blockade to enhance the efficacy of anti-CTLA-4 and anti-PD-1 immune checkpoint blockade in immunocompetent, preclinical models of TNBC.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to evaluate the rational combination of TORC1/2 inhibitor TAK-228 and Aurora A kinase inhibitor alisertib in preclinical models of triple-negative breast cancer (TNBC) and to conduct a phase I dose escalation trial in patients with advanced solid tumors.

Experimental Design: TNBC cell lines and patient-derived xenograft (PDX) models were treated with alisertib, TAK-228, or the combination and evaluated for changes in proliferation, cell cycle, mTOR pathway modulation, and terminal cellular fate, including apoptosis and senescence. A phase I clinical trial was conducted in patients with advanced solid tumors treated with escalating doses of alisertib and TAK-228 using a 3+3 design to determine the maximum tolerated dose (MTD).

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is an aggressive subtype defined by lack of hormone receptor expression and non-amplified HER2. Adavosertib (AZD1775) is a potent, small-molecule, ATP-competitive inhibitor of the Wee1 kinase that potentiates the activity of many DNA-damaging chemotherapeutics and is currently in clinical development for multiple indications. The purpose of this study was to investigate the combination of AZD1775 and capecitabine/5FU in preclinical TNBC models.

View Article and Find Full Text PDF

RX-5902 is a first-in-class anticancer agent targeting phosphorylated-p68 and attenuating nuclear shuttling of β-catenin. The purpose of this study was to evaluate the efficacy of RX-5902 in preclinical models of triple-negative breast cancer (TNBC) and to explore effects on β-catenin expression. A panel of 18 TNBC cell lines was exposed to RX-5902, and changes in proliferation, apoptosis, cellular ploidy, and effector protein expression were assessed.

View Article and Find Full Text PDF

Background: Large-scale "omics" datasets have not been leveraged and integrated with functional analyses to discover potential drivers of cardiomyopathy. This study addresses the knowledge gap.

Methods: We coupled RNA sequence (RNA-Seq) variant detection and transcriptome profiling with pathway analysis to model drug refractory dilated cardiomyopathy (drDCM) using the BaseSpace sequencing hub and Ingenuity Pathway Analysis.

View Article and Find Full Text PDF

Molecularly-targeted agents have improved outcomes for a subset of patients with -mutated melanoma, but treatment of resistant and wild-type tumors remains a challenge. The MERTK receptor tyrosine kinase is aberrantly expressed in melanoma and can contribute to oncogenic phenotypes. Here we report the effect of treatment with a MERTK-selective small molecule inhibitor, UNC2025, in preclinical models of melanoma.

View Article and Find Full Text PDF

Oncogenic BRAF fusions have emerged as an alternate mechanism for BRAF activation in melanomas and other cancers. A number of BRAF fusions with different 5' gene partners and BRAF exon breakpoints have been described, but the effects of different partners and breakpoints on cancer phenotypes and treatment responses has not been well characterized. Targeted RNA sequencing was used to screen 60 melanoma patient-derived xenograft (PDX) models for BRAF fusions.

View Article and Find Full Text PDF

Background: Triple-negative breast cancer (TNBC) remains an aggressive breast cancer subtype with limited treatment options. ENMD-2076 is a small-molecule inhibitor of Aurora and angiogenic kinases with proapoptotic and antiproliferative activity in preclinical models of TNBC.

Methods: This dual-institution, single-arm, two-stage, phase II clinical trial enrolled patients with locally advanced or metastatic TNBC previously treated with one to three prior lines of chemotherapy in the advanced setting.

View Article and Find Full Text PDF

Cancer is a disease caused by several factors characterized by uncontrolled cell division, growth, and survival. ENMD-2076, is a novel orally active small molecule multikinase inhibitor targeting angiogenesis, proliferation, and the cell cycle. It is selectively active against the mitotic kinases aurora A and B, and kinases responsible for angiogenesis including VEGFR2/KDR and FGFR1 and 2.

View Article and Find Full Text PDF

Background: Polo-like kinase 1 (Plk1) is a serine/threonine kinase that is a key regulator of multiple stages of mitotic progression. Plk1 is upregulated in many tumor types including colorectal cancer (CRC) and portends a poor prognosis. TAK-960 is an ATP-competitive Plk1 inhibitor that has demonstrated efficacy across a broad range of cancer cell lines, including CRC.

View Article and Find Full Text PDF

Oncogenic fusions occur in several types of cancer and can be effectively treated with ALK inhibitors; however, fusions and treatment response have not been characterized in malignant melanomas. Recently, a novel isoform of ( ) was reported in 11% of melanomas but the response of melanomas expressing to ALK inhibition has not been well characterized. We analyzed 45 melanoma patient-derived xenograft models for mRNA and protein expression.

View Article and Find Full Text PDF

Purpose: Triple-negative breast cancer (TNBC) is a subtype associated with poor prognosis and for which there are limited therapeutic options. The purpose of this study was to evaluate the efficacy of ENMD-2076 in p53-mutated TNBC patient-derived xenograft (PDX) models and describe patterns of terminal cell fate in models demonstrating sensitivity, intrinsic resistance, and acquired resistance to ENMD-2076.

Experimental Design: p53-mutated, TNBC PDX models were treated with ENMD-2076 and evaluated for mechanisms of sensitivity or resistance to treatment.

View Article and Find Full Text PDF

Mucosal melanomas are a rare subtype of melanoma, arising in mucosal tissues, which have a very poor prognosis due to the lack of effective targeted therapies. This study aimed to better understand the molecular landscape of these cancers and find potential new therapeutic targets. Whole-exome sequencing was performed on mucosal melanomas from 19 patients and 135 sun-exposed cutaneous melanomas, with matched peripheral blood samples when available.

View Article and Find Full Text PDF

Background The neddylation pathway conjugates NEDD8 to cullin-RING ligases and controls the proteasomal degradation of specific proteins involved in essential cell processes. Pevonedistat (MLN4924) is a selective small molecule targeting the NEDD8-activating enzyme (NAE) and inhibits an early step in neddylation, resulting in DNA re-replication, cell cycle arrest and death. We investigated the anti-tumor potential of pevonedistat in preclinical models of melanoma.

View Article and Find Full Text PDF

Patient derived tumor xenograft (PDTX) models provide a necessary platform in facilitating anti-cancer drug development prior to human trials. Human tumor pieces are injected subcutaneously into athymic nude mice (immunocompromised, T cell deficient) to create a bank of tumors and subsequently are passaged into different generations of mice in order to maintain these tumors from patients. Importantly, cellular heterogeneity of the original tumor is closely emulated in this model, which provides a more clinically relevant model for evaluation of drug efficacy studies (single agent and combination), biomarker analysis, resistant pathways and cancer stem cell biology.

View Article and Find Full Text PDF

Background: The Aurora kinases are a family of serine/threonine kinases comprised of Aurora A, B, and C which execute critical steps in mitotic and meiotic progression. Alisertib (MLN8237) is an investigational Aurora A selective inhibitor that has demonstrated activity against a wide variety of tumor types in vitro and in vivo, including CRC.

Results: CRC cell lines demonstrated varying sensitivity to alisertib with IC50 values ranging from 0.

View Article and Find Full Text PDF

Background: Triple-Negative Breast Cancer (TNBC) is an aggressive disease with a poor prognosis. Clinically, TNBC patients have limited treatment options besides chemotherapy. The goal of this study was to determine the kinase dependency in TNBC cell lines and to predict compounds that could inhibit these kinases using integrative bioinformatics analysis.

View Article and Find Full Text PDF

Background: CRC is a significant cause of cancer mortality, and new therapies are needed for patients with advanced disease. TAK-733 is a highly potent and selective investigational novel MEK allosteric site inhibitor.

Materials And Methods: In a preclinical study of TAK-733, a panel of CRC cell lines were exposed to varying concentrations of the agent for 72 hours followed by a sulforhodamine B assay.

View Article and Find Full Text PDF

Aurora A kinase and MEK inhibitors induce different, and potentially complementary, effects on the cell cycle of malignant cells, suggesting a rational basis for utilizing these agents in combination. In this work, the combination of an Aurora A kinase and MEK inhibitor was evaluated in pre-clinical colorectal cancer models, with a focus on identifying a subpopulation in which it might be most effective. Increased synergistic activity of the drug combination was identified in colorectal cancer cell lines with concomitant KRAS and PIK3CA mutations.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is an aggressive disease with a poor prognosis. Advances in the treatment of TNBC have been hampered by the lack of novel effective targeted therapies. The primary goal of this study was to evaluate the efficacy of targeting Aurora kinase A (AurA), a key regulator of mitosis, in TNBC models.

View Article and Find Full Text PDF

Background: The activation of the MAPK and PI3K/AKT/mTOR pathways is implicated in the majority of cancers. Activating mutations in both of these pathways has been described in colorectal cancer (CRC), thus indicating their potential as therapeutic targets. This study evaluated the combination of a PI3K/mTOR inhibitor (PF-04691502/PF-502) in combination with a MEK inhibitor (PD-0325901/PD-901) in CRC cell lines and patient-derived CRC tumor xenograft models (PDTX).

View Article and Find Full Text PDF

The goal of this study was to investigate the activity of the selective MEK1/2 inhibitor TAK-733 in both melanoma cell lines and patient-derived melanoma xenograft models. In vitro cell proliferation assays using the sulforhodamine B assay were conducted to determine TAK-733 potency and melanoma responsiveness. In vivo murine modeling with eleven patient-derived melanoma explants evaluated daily dosing of TAK-733 at 25 or 10 mg/kg.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) represents a challenge clinically due to a lack of response to hormonal and HER2-targeted agents coupled with an aggressive disease course. As the biology of this breast cancer subtype is better understood, it is clear that TNBC is a heterogeneous disease and one targeted therapy is unlikely to be active in all patients. Biomarkers predictive of response to treatment are thus of great importance in TNBC.

View Article and Find Full Text PDF