Site-specific integration (SSI) via recombinase mediated cassette exchange (RMCE) has shown advantages over random integration methods for expression of biotherapeutics. As an extension of our previous work developing SSI host cells, we developed a dual-site SSI system having two independent integration sites at different genomic loci, each containing a unique landing pad (LP). This system was leveraged to generate and compare two RMCE hosts, one (dFRT) compatible with the Flp recombinase, the other (dBxb1) compatible with the Bxb1 recombinase.
View Article and Find Full Text PDFSite-specific integration (SSI) technology has emerged as an effective approach by the pharmaceutical industry for the development of recombinant Chinese hamster ovary (CHO) cell lines. While SSI systems have been demonstrated to be effective for the development of CHO cell lines, they can be limiting in terms of both transgene expression and in the case of multi-specifics, the ability to generate the correct product of interest. To maximize the performance of Pfizer's dual SSI expression system for expressing monoclonal and multi-specific antibodies, we used a novel approach to investigate the positional effect of transgenes within expression vectors by engineering nucleotide polymorphisms (NP)s to use as biomarkers to track the level of transcript output from each expression vector position.
View Article and Find Full Text PDFSite-specific integration (SSI) cell line systems are gaining popularity for biotherapeutic development and production. Despite the proven advantages for these expression hosts, the SSI system is still susceptible to rare off-target events and potential vector rearrangements. Here we describe the development process of an SSI cell line for production of an IgG1 monoclonal antibody (mAb-086).
View Article and Find Full Text PDFThis study has employed mammalian transient expression systems to generate afucosylated antibodies and antibody Fc mutants for rapid candidate screening in discovery and early development. While chemical treatment with the fucose analogue 2-fluoro-peracetyl-fucose during transient expression only partially produced antibodies with afucosylated N-glycans, the genetic inactivation of the FUT8 gene in ExpiCHO-S™ by CRISPR/Cas9 enabled the transient production of fully afucosylated antibodies. Human IgG and murine IgG generated by the ExpiCHOfut8KO cell line possessed a 8-to-11-fold enhanced FcγRIIIa binding activity in comparison with those produced by ExpiCHO-S™.
View Article and Find Full Text PDFGlycans as sugar polymers are important metabolic, structural, and physiological regulators for cellular and biological functions. They are often classified as critical quality attributes to antibodies and recombinant fusion proteins, given their impacts on the efficacy and safety of biologics drugs. Recent reports on the conjugates of N-acetyl-galactosamine and mannose-6-phosphate for lysosomal degradation, Fab glycans for antibody diversification, as well as sialylation therapeutic modulations and O-linked applications, have been fueling the continued interest in glycoengineering.
View Article and Find Full Text PDFSite specific integration (SSI) expression systems offer robust means of generating highly productive and stable cell lines for traditional monoclonal antibodies. As complex modalities such as antibody-like molecules comprised of greater than two peptides become more prevalent, greater emphasis needs to be placed on the ability to produce appreciable quantities of the correct product of interest (POI). The ability to screen several transcript stoichiometries could play a large role in ensuring high amounts of the correct POI.
View Article and Find Full Text PDFThe fortuitously discovered antiaging membrane protein αKlotho (Klotho) is highly expressed in the kidney, and deletion of the gene in mice causes a phenotype strikingly similar to that of chronic kidney disease (CKD). Klotho functions as a co-receptor for fibroblast growth factor 23 (FGF23) signaling, whereas its shed extracellular domain, soluble Klotho (sKlotho), carrying glycosidase activity, is a humoral factor that regulates renal health. Low sKlotho in CKD is associated with disease progression, and sKlotho supplementation has emerged as a potential therapeutic strategy for managing CKD.
View Article and Find Full Text PDFN-linked glycosylation in monoclonal antibodies (mAbs) is crucial for structural and functional properties of mAb therapeutics, including stability, pharmacokinetics, safety and clinical efficacy. The biopharmaceutical industry currently lacks tools to precisely control N-glycosylation levels during mAb production. In this study, we engineered Chinese hamster ovary cells with synthetic genetic circuits to tune N-glycosylation of a stably expressed IgG.
View Article and Find Full Text PDFN-linked glycosylation affects the potency, safety, immunogenicity, and pharmacokinetic clearance of several therapeutic proteins including monoclonal antibodies. A robust control strategy is needed to dial in appropriate glycosylation profile during the course of cell culture processes accurately. However, N-glycosylation dynamics remains insufficiently understood owing to the lack of integrative analyses of factors that influence the dynamics, including sugar nucleotide donors, glycosyltransferases, and glycosidases.
View Article and Find Full Text PDFLarge-scale transient expression in mammalian cells is a rapid protein production technology often used to shorten overall timelines for biotherapeutics drug discovery. In this study we demonstrate transient expression in a Chinese hamster ovary (CHO) host (ExpiCHO-S™) cell line capable of achieving high recombinant antibody expression titers, comparable to levels obtained using human embryonic kidney (HEK) 293 cells. For some antibodies, ExpiCHO-S™ cells generated protein materials with better titers and improved protein quality characteristics (i.
View Article and Find Full Text PDFDuring development of a cell line intended to support production of an IgG2 monoclonal antibody, a sequence variant caused by a genetic mutation was identified in the bulk drug substance. Gene copy number analysis together with the level of the observed variant in genomic DNA indicated that the master cell bank was a mixed population of cells; some harboring the variant copy and some mutation free. Since the cell bank had been single-cell cloned, this variant could be used as a biomarker to demonstrate either that the bank was not derived from a single cell, or that the variant was a result of a post-cloning genetic event, leading to a mixed population of cells.
View Article and Find Full Text PDFN-glycan profiling is commonly accomplished by the derivatization of the enzymatically released oligosaccharides with a fluorophore, thereby facilitating their analysis by hydrophilic-interaction liquid chromatography (HILIC). These fluorescent dyes are often present in large excess during derivatization reactions, and their removal is typically required to minimize chromatographic interference. Herein, we report a reactivity-driven 2-phase extraction protocol with the aldehyde reagent octanal, which demonstrated efficient 2-aminobenzamide cleanup as well as high derivatized N-glycan recovery.
View Article and Find Full Text PDFDevelopment of stable cell lines for expression of large-molecule therapeutics represents a significant portion of the time and effort required to advance a molecule to enabling regulatory toxicology studies and clinical evaluation. Our development strategy employs two different approaches for cell line development based on the needs of a particular project: a random integration approach for projects where high-level expression is critical, and a site-specific integration approach for projects in which speed and reduced employee time spend is a necessity. Here we describe both our random integration and site-specific integration platforms and their applications in support of monoclonal antibody development and production.
View Article and Find Full Text PDFThe glycosylphosphatidylinositol (GPI) anchor is an essential glycolipid that tethers certain eukaryotic proteins to the cell surface. The core structure of the GPI anchor is remarkably well conserved across evolution and consists of NH2-CH2-CH2-PO4-6Manα1,2Manα1,6Manα1,4-GlcNα1,6-myo-inositol-PO4-lipid. The glycan portion of this structure may be modified with various side-branching sugars or other compounds that are heterogeneous and differ from organism to organism.
View Article and Find Full Text PDFYeast glycan biosynthetic pathways are commonly studied through metabolic incorporation of an exogenous radiolabeled compound into a target glycan. In Saccharomyces cerevisiae glycosylphosphatidylinositol (GPI) biosynthesis, [(3) H]inositol has been widely used to identify intermediates that accumulate in conditional GPI synthesis mutants. However, this approach also labels non-GPI lipid species that overwhelm detection of early GPI intermediates during chromatography.
View Article and Find Full Text PDFNuclear export of messenger RNA (mRNA) occurs by translocation of mRNA/protein complexes (mRNPs) through nuclear pore complexes (NPCs). The DEAD-box protein Dbp5 mediates export by triggering removal of mRNP proteins in a spatially controlled manner. This requires Dbp5 interaction with Nup159 in NPC cytoplasmic filaments and activation of Dbp5's ATPase activity by Gle1 bound to inositol hexakisphosphate (IP(6)).
View Article and Find Full Text PDFCells of Saccharomyces cerevisiae lacking Apq12, a nuclear envelope (NE)-endoplasmic reticulum (ER) integral membrane protein, are defective in assembly of nuclear pore complexes (NPCs), possibly because of defects in regulating membrane fluidity. We identified BRR6, which encodes an essential integral membrane protein of the NE-ER, as a dosage suppressor of apq12 Delta. Cells carrying the temperature-sensitive brr6-1 allele have been shown to have defects in nucleoporin localization, mRNA metabolism and nuclear transport.
View Article and Find Full Text PDFCoordination of the multiple steps of mRNA biogenesis helps to ensure proper regulation of gene expression. The Saccharomyces cerevisiae DEAD-box protein Rat8p/Dbp5p is an essential mRNA export factor that functions at the nuclear pore complex (NPC) where it is thought to remodel mRNA/protein complexes during mRNA export. Rat8p also functions in translation termination and has been implicated in functioning during early transcription.
View Article and Find Full Text PDFAlthough the structure and function of components of the nuclear pore complex (NPC) have been the focus of many studies, relatively little is known about NPC biogenesis. In this study, we report that Apq12 is required for efficient NPC biogenesis in Saccharomyces cerevisiae. Apq12 is an integral membrane protein of the nuclear envelope (NE) and endoplasmic reticulum.
View Article and Find Full Text PDFIn eukaryotes, termination of messenger RNA (mRNA) translation is mediated by the release factors eRF1 and eRF3. Using Saccharomyces cerevisiae as a model organism, we have identified a member of the DEAD-box protein (DBP) family, the DEAD-box RNA helicase and mRNA export factor Dbp5, as a player in translation termination. Dbp5 interacts genetically with both release factors and the polyadenlyate-binding protein Pab1.
View Article and Find Full Text PDFAll movement of molecules and macromolecules between the cytoplasm and the nucleus takes place through nuclear pore complexes (NPCs), very large macromolecular complexes that are the only channels connecting these compartments. mRNA export is mediated by multiple, highly conserved protein factors that couple steps of nuclear pre-mRNA biogenesis to mRNA transport. Mature messenger ribonucleoproteins (mRNPs) diffuse from sites of transcription to NPCs, although some active genes are positioned at the nuclear periphery where they interact physically with components of NPCs.
View Article and Find Full Text PDF