Publications by authors named "John J Rice"

Parkinson's disease (PD) patients require frequent office visits where they are assessed for health state changes using Unified Parkinson's Disease Rating Scale (UPDRS). Inertial wearable sensor devices present a unique opportunity to supplement these assessments with continuous monitoring. In this work, we analyze kinematic features from sensor devices located on feet, wrists, lumbar and sternum for 35 PD subjects as they performed walk trials in two clinical visits, one for each of their self-reported ON and OFF motor states.

View Article and Find Full Text PDF

A novel writing platform composed of a wearable sensor on the fingernail and classification algorithms is described. Findings from using this platform to translate fingertip writing into shapes, letters, and numbers on a range of surfaces are reported. The new wearable platform leverages an architecture with miniaturized electronic circuitry to precisely measure a set of forces in the longitudinal and transverse directions using multiple strain gauges.

View Article and Find Full Text PDF

Patient specific models of ventricular mechanics require the optimization of their many parameters under the uncertainties associated with imaging of cardiac function. We present a strategy to reduce the complexity of parametric searches for 3-D FE models of left ventricular contraction. The study employs automatic image segmentation and analysis of an image database to gain geometric features for several classes of patients.

View Article and Find Full Text PDF

While pre-clinical Torsades de Pointes (TdP) risk classifiers had initially been based on drug-induced block of hERG potassium channels, it is now well established that improved risk prediction can be achieved by considering block of non-hERG ion channels. The current multi-channel TdP classifiers can be categorized into two classes. First, the classifiers that take as input the values of drug-induced block of ion channels (direct features).

View Article and Find Full Text PDF

Ectopic heartbeats can trigger reentrant arrhythmias, leading to ventricular fibrillation and sudden cardiac death. Such events have been attributed to perturbed Ca2+ handling in cardiac myocytes leading to spontaneous Ca2+ release and delayed afterdepolarizations (DADs). However, the ways in which perturbation of specific molecular mechanisms alters the probability of ectopic beats is not understood.

View Article and Find Full Text PDF

Motivation: Animal models are important tools in drug discovery and for understanding human biology in general. However, many drugs that initially show promising results in rodents fail in later stages of clinical trials. Understanding the commonalities and differences between human and rat cell signaling networks can lead to better experimental designs, improved allocation of resources and ultimately better drugs.

View Article and Find Full Text PDF

The biological responses to external cues such as drugs, chemicals, viruses and hormones, is an essential question in biomedicine and in the field of toxicology, and cannot be easily studied in humans. Thus, biomedical research has continuously relied on animal models for studying the impact of these compounds and attempted to 'translate' the results to humans. In this context, the SBV IMPROVER (Systems Biology Verification for Industrial Methodology for PROcess VErification in Research) collaborative initiative, which uses crowd-sourcing techniques to address fundamental questions in systems biology, invited scientists to deploy their own computational methodologies to make predictions on species translatability.

View Article and Find Full Text PDF

We have developed the capability to rapidly simulate cardiac electrophysiological phenomena in a human heart discretised at a resolution comparable with the length of a cardiac myocyte. Previous scientific investigation has generally invoked simplified geometries or coarse-resolution hearts, with simulation duration limited to 10s of heartbeats. Using state-of-the-art high-performance computing techniques coupled with one of the most powerful computers available (the 20 PFlop/s IBM BlueGene/Q at Lawrence Livermore National Laboratory), high-resolution simulation of the human heart can now be carried out over 1200 times faster compared with published results in the field.

View Article and Find Full Text PDF

Objectives: The study was designed to assess the ability of computer-simulated electrocardiography parameters to predict clinical outcomes and to risk-stratify patients with long QT syndrome type 1 (LQT1).

Background: Although attempts have been made to correlate mutation-specific ion channel dysfunction with patient phenotype in long QT syndrome, these have been largely unsuccessful. Systems-level computational models can be used to predict consequences of complex changes in channel function to the overall heart rhythm.

View Article and Find Full Text PDF

Future multiscale and multiphysics models must use the power of high performance computing (HPC) systems to enable research into human disease, translational medical science, and treatment. Previously we showed that computationally efficient multiscale models will require the use of sophisticated hybrid programming models, mixing distributed message passing processes (e.g.

View Article and Find Full Text PDF

The heart is a multiphysics and multiscale system that has driven the development of the most sophisticated mathematical models at the frontiers of computational physiology and medicine. This review focuses on electromechanical (EM) models of the heart from the molecular level of myofilaments to anatomical models of the organ. Because of the coupling in terms of function and emergent behaviors at each level of biological hierarchy, separation of behaviors at a given scale is difficult.

View Article and Find Full Text PDF

Future multiscale and multiphysics models that support research into human disease, translational medical science, and treatment can utilize the power of high-performance computing (HPC) systems. We anticipate that computationally efficient multiscale models will require the use of sophisticated hybrid programming models, mixing distributed message-passing processes [e.g.

View Article and Find Full Text PDF

We present the orthogonal recursive bisection algorithm that hierarchically segments the anatomical model structure into subvolumes that are distributed to cores. The anatomy is derived from the Visible Human Project, with electrophysiology based on the FitzHugh-Nagumo (FHN) and ten Tusscher (TT04) models with monodomain diffusion. Benchmark simulations with up to 16,384 and 32,768 cores on IBM Blue Gene/P and L supercomputers for both FHN and TT04 results show good load balancing with almost perfect speedup factors that are close to linear with the number of cores.

View Article and Find Full Text PDF

Inherited long QT syndrome (LQTS) is caused by mutations in ion channels that delay cardiac repolarization, increasing the risk of sudden death from ventricular arrhythmias. Currently, the risk of sudden death in individuals with LQTS is estimated from clinical parameters such as age, gender, and the QT interval, measured from the electrocardiogram. Even though a number of different mutations can cause LQTS, mutation-specific information is rarely used clinically.

View Article and Find Full Text PDF

Cardiac electrophysiology is a discipline with a rich 50-year history of experimental research coupled with integrative modeling which has enabled us to achieve a quantitative understanding of the relationships between molecular function and the integrated behavior of the cardiac myocyte in health and disease. In this paper, we review the development of integrative computational models of the cardiac myocyte. We begin with a historical overview of key cardiac cell models that helped shape the field.

View Article and Find Full Text PDF

Orthogonal recursive bisection (ORB) algorithm can be used as data decomposition strategy to distribute a large data set of a cardiac model to a distributed memory supercomputer. It has been shown previously that good scaling results can be achieved using the ORB algorithm for data decomposition. However, the ORB algorithm depends on the distribution of computational load of each element in the data set.

View Article and Find Full Text PDF

High performance computing is required to make feasible simulations of whole organ models of the heart with biophysically detailed cellular models in a clinical setting. Increasing model detail by simulating electrophysiology and mechanical models increases computation demands. We present scaling results of an electro - mechanical cardiac model of two ventricles and compare them to our previously published results using an electrophysiological model only.

View Article and Find Full Text PDF

Multi-scale, multi-physical heart models have not yet been able to include a high degree of accuracy and resolution with respect to model detail and spatial resolution due to computational limitations of current systems. We propose a framework to compute large scale cardiac models. Decomposition of anatomical data in segments to be distributed on a parallel computer is carried out by optimal recursive bisection (ORB).

View Article and Find Full Text PDF

Cardiovascular diseases are leading causes of death, reduce life quality and consume almost half a trillion dollars in healthcare expenses in the USA alone. Cardiac modeling and simulation technologies hold promise as important tools to improve cardiac care and are already in use to elucidate the fundamental mechanisms of cardiac physiology and pathophysiology. However, the emphasis has been on simulating average or exemplar cases.

View Article and Find Full Text PDF

We develop a point model of the cardiac myofilament (MF) to simulate a wide variety of experimental muscle characterizations including Force-Ca relations and twitches under isometric, isosarcometric, isotonic, and auxotonic conditions. Complex MF behaviors are difficult to model because spatial interactions cannot be directly implemented as ordinary differential equations. We therefore allow phenomenological approximations with careful consideration to the relationships with the underlying biophysical mechanisms.

View Article and Find Full Text PDF

In the field of cardiac modeling, calcium- (Ca-) based activation is often described by sets of ordinary differential equations that do not explicitly represent spatial interactions of regulatory proteins or crossbridge attachment. These spatially compressed models are most often mean-field representations as opposed to methods that explicitly compute the surrounding field (or equivalently, the surrounding environment) of individual regulatory units and crossbridges. Instead, a mean value is used to represent the whole population.

View Article and Find Full Text PDF

Recent observations show that the single-cell response of p53 to ionizing radiation (IR) is "digital" in that it is the number of oscillations rather than the amplitude of p53 that shows dependence on the radiation dose. We present a model of this phenomenon. In our model, double-strand break (DSB) sites induced by IR interact with a limiting pool of DNA repair proteins, forming DSB-protein complexes at DNA damage foci.

View Article and Find Full Text PDF

Motivation: One of the present challenges in biological research is the organization of the data originating from high-throughput technologies. One way in which this information can be organized is in the form of networks of influences, physical or statistical, between cellular components. We propose an experimental method for probing biological networks, analyzing the resulting data and reconstructing the network architecture.

View Article and Find Full Text PDF

While the primary function of the heart is a pump, ironically, the development of myofilament models that predict developed force have generally lagged behind the modeling of the electrophysiological and Ca2+-handling aspects of heart cells. A major impediment is that the basic events in force generating actin-myosin interactions are still not well understood and quantified despite advanced techniques that can probe molecular levels events and identify numerous energetic states. As a result, the modeler must decide how to best abstract the many identified states into useful models with an essential tradeoff in the level of complexity.

View Article and Find Full Text PDF