The spatial distribution and data quality of curve number (CN) values determine the performance of hydrological estimations. However, existing CN datasets are constrained by universal-applicability hypothesis, medium resolution, and imbalance between specificity CN tables to generalized land use/land cover (LULC) maps, which hinder their applicability and predictive accuracy. A new annual CN dataset named CUSCN30, featuring an enhanced resolution of 30 meters and accounting for temporal variations in climate and LULC in the continental United States (CONUS) between 2008 and 2021, was developed in this study.
View Article and Find Full Text PDFComputer models are commonly used for predicting risks of runoff P loss from agricultural fields by enabling simulation of various management practices and climatic scenarios. For P loss models to be useful tools, however, they must accurately predict P loss for a wide range of climatic, physiographic, and land management conditions. A complicating factor in developing and evaluating P loss models is the relative scarcity of available measured field data that adequately capture P losses before and after implementing management practices in a variety of physiographic settings.
View Article and Find Full Text PDFPhosphorus (P) Indices in the southern United States frequently produce different recommendations for similar conditions. We compared risk ratings from 12 southern states (Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, and Texas) using data collected from benchmark sites in the South (Arkansas, Georgia, Mississippi, North Carolina, Oklahoma, and Texas). Phosphorus Index ratings were developed using both measured erosion losses from each benchmark site and Revised Universal Soil Loss Equation 2 predictions; mostly, there was no difference in P Index outcome.
View Article and Find Full Text PDFThe Agricultural Policy Environmental eXtender (APEX) model has been widely applied to assess phosphorus (P) loss in runoff water and has been proposed as a model to support practical decisions regarding agricultural P management, as well as a model to evaluate tools such as the P Index. The aim of this study is to evaluate the performance of APEX to simulate P losses from agricultural systems to determine its potential use for refinement or replacement of the P Index in the southern region of the United States. Uncalibrated and calibrated APEX model predictions were compared against measured water quality data from row crop fields in North Carolina and Mississippi and pasture fields in Arkansas and Georgia.
View Article and Find Full Text PDFMost phosphorus (P) modeling studies of water quality have focused on surface runoff loses. However, a growing number of experimental studies have shown that P losses can occur in drainage water from artificially drained fields. In this review, we assess the applicability of nine models to predict this type of P loss.
View Article and Find Full Text PDF