Publications by authors named "John J McCarthy"

Article Synopsis
  • Extracellular vesicles (EVs) play a key role in how muscles and fat communicate, particularly after resistance exercise.
  • A study found that muscle-specific microRNA-1 (miR-1) is transferred to fat tissue through EVs after weightlifting sessions.
  • The research highlights how miR-1 affects fat cell behavior by regulating target genes related to fat breakdown, suggesting a mechanism for how exercise influences fat metabolism.
View Article and Find Full Text PDF

MicroRNA-1 (miR-1) is the most abundant miRNA in adult skeletal muscle. To determine the function of miR-1 in adult skeletal muscle, we generated an inducible, skeletal muscle-specific miR-1 knockout (KO) mouse. Integration of RNA-sequencing (RNA-seq) data from miR-1 KO muscle with Argonaute 2 enhanced crosslinking and immunoprecipitation sequencing (AGO2 eCLIP-seq) from human skeletal muscle identified miR-1 target genes involved with glycolysis and pyruvate metabolism.

View Article and Find Full Text PDF

Skeletal muscle stem cells (MuSCs) display distinct behavior crucial for tissue maintenance and repair. Upon activation, MuSCs exhibit distinct modes of division: symmetric division, facilitating either self-renewal or differentiation, and asymmetric division, which dictates divergent cellular fates. This review explores the nuanced dynamics of MuSC division and the molecular mechanisms governing this behavior.

View Article and Find Full Text PDF

Roberts et al. have provided an insightful counterpoint to our review article on the utility of the synergist ablation model. The purpose of this review is to provide some further dialogue regarding the strengths and weaknesses of the synergist ablation model.

View Article and Find Full Text PDF

Skeletal muscle exhibits remarkable plasticity to adapt to stimuli such as mechanical loading. The mechanisms that regulate skeletal muscle hypertrophy due to mechanical overload have been thoroughly studied. Remarkably, our understanding of many of the molecular and cellular mechanisms that regulate hypertrophic growth were first identified using the rodent synergist ablation (SA) model and subsequently corroborated in human resistance exercise training studies.

View Article and Find Full Text PDF

Regular exercise yields a multitude of systemic benefits, many of which may be mediated through the gut microbiome. Here, we report that cecal microbial transplants (CMTs) from exercise-trained vs. sedentary mice have modest benefits in reducing skeletal muscle atrophy using a mouse model of unilaterally hindlimb-immobilization.

View Article and Find Full Text PDF

Since the first use of methadone to treat OUD in pregnancy in the 1970s, there has been a long, controversial, and confusing history of studies, regulatory actions, and practice changes that have clouded an accurate perception of methadone's use in pregnancy. This review will trace this history with a focus on the effect of methadone exposure during pregnancy on neonatal abstinence syndrome (NAS). A new laboratory measure, the serum methadone/metabolite ratio (MMR), has provided a tool for documenting the profoundly dynamic nature of perinatal metabolism.

View Article and Find Full Text PDF

Apolipoprotein E (ApoE) has been shown to be necessary for proper skeletal muscle regeneration. Consistent with this finding, single-cell RNA-sequencing analyses of skeletal muscle stem cells (MuSCs) revealed that is a top marker of quiescent MuSCs that is downregulated upon activation. The purpose of this study was to determine if muscle regeneration is altered in mice which harbor one of the three common human ApoE isoforms, referred to as ApoE2, E3 and E4.

View Article and Find Full Text PDF

Adult muscle stem cells (MuSCs) are known to replicate upon activation before differentiating and fusing to regenerate myofibers. It is unclear whether MuSC differentiation is intrinsically linked to cell division, which has implications for stem cell population maintenance. We use single-cell RNA-sequencing to identify transcriptionally diverse subpopulations of MuSCs after 5 days of a growth stimulus in adult muscle.

View Article and Find Full Text PDF

The central dogma of molecular biology dictates the general flow of molecular information from DNA that leads to a functional cellular outcome. In skeletal muscle fibers, the extent to which global myonuclear transcriptional alterations, accounting for epigenetic and post-transcriptional influences, contribute to an adaptive stress response is not clearly defined. In this investigation, we leveraged an integrated analysis of the myonucleus-specific DNA methylome and transcriptome, as well as myonuclear small RNA profiling to molecularly define the early phase of skeletal muscle fiber hypertrophy.

View Article and Find Full Text PDF

Recently, the gut microbiome has emerged as a potent modulator of exercise-induced systemic adaptation and appears to be crucial for mediating some of the benefits of exercise. This study builds upon previous evidence establishing a gut microbiome-skeletal muscle axis, identifying exercise-induced changes in microbiome composition. Metagenomics sequencing of fecal samples from non-exercise-trained controls or exercise-trained mice was conducted.

View Article and Find Full Text PDF

Skeletal muscle adaptation to external stimuli, such as regeneration following injury and hypertrophy in response to resistance exercise, are blunted with advanced age. The accumulation of senescent cells, along with defects in myogenic progenitor cell (MPC) proliferation, have been strongly linked as contributing factors to age-associated impairment in muscle adaptation. p53 plays an integral role in all these processes, as upregulation of p53 causes apoptosis in senescent cells and prevents mitotic catastrophe in MPCs from old mice.

View Article and Find Full Text PDF

Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved.

View Article and Find Full Text PDF

Background: Prolonged exposure to toxic heavy metals leads to deleterious health outcomes including kidney injury. Metal exposure occurs through both environmental pathways including contamination of drinking water sources and from occupational hazards, including the military-unique risks from battlefield injuries resulting in retained metal fragments from bullets and blast debris. One of the key challenges to mitigate health effects in these scenarios is to detect early insult to target organs, such as the kidney, before irreversible damage occurs.

View Article and Find Full Text PDF

Most cells in the body are mononuclear whereas skeletal muscle fibres are uniquely multinuclear. The nuclei of muscle fibres (myonuclei) are usually situated peripherally which complicates the equitable distribution of gene products. Myonuclear abundance can also change under conditions such as hypertrophy and atrophy.

View Article and Find Full Text PDF

The skeletal muscle research field generally accepts that nuclei in skeletal muscle fibers (ie, myonuclei) are post-mitotic and unable to proliferate. Because our deuterium oxide (DO) labeling studies showed DNA synthesis in skeletal muscle tissue, we hypothesized that resident myonuclei can replicate . To test this hypothesis, we used a mouse model that temporally labeled myonuclei with GFP followed by DO labeling during normal cage activity, functional overload, and with satellite cell ablation.

View Article and Find Full Text PDF

Exercise promotes functional improvements in aged tissues, but the extent to which it simulates partial molecular reprogramming is unknown. Using transcriptome profiling from (1) a skeletal muscle-specific in vivo Oct3/4, Klf4, Sox2 and Myc (OKSM) reprogramming-factor expression murine model; (2) an in vivo inducible muscle-specific Myc induction murine model; (3) a translatable high-volume hypertrophic exercise training approach in aged mice; and (4) human exercise muscle biopsies, we collectively defined exercise-induced genes that are common to partial reprogramming. Late-life exercise training lowered murine DNA methylation age according to several contemporary muscle-specific clocks.

View Article and Find Full Text PDF

Myc is a powerful transcription factor implicated in epigenetic reprogramming, cellular plasticity, and rapid growth as well as tumorigenesis. Cancer in skeletal muscle is extremely rare despite marked and sustained Myc induction during loading-induced hypertrophy. Here, we investigated global, actively transcribed, stable, and myonucleus-specific transcriptomes following an acute hypertrophic stimulus in mouse plantaris.

View Article and Find Full Text PDF

One aspect of skeletal muscle memory is the ability of a previously trained muscle to hypertrophy more rapidly following a period of detraining. Although the molecular basis of muscle memory remains to be fully elucidated, one potential mechanism thought to mediate muscle memory is the permanent retention of myonuclei acquired during the initial phase of hypertrophic growth. However, myonuclear permanence is debated and would benefit from a meta-analysis to clarify the current state of the field for this important aspect of skeletal muscle plasticity.

View Article and Find Full Text PDF

With aging, skeletal muscle plasticity is attenuated in response to exercise. Here, we report that senescent cells, identified using senescence-associated β-galactosidase (SA β-Gal) activity and p21 immunohistochemistry, are very infrequent in resting muscle, but emerge approximately 2 weeks after a bout of resistance exercise in humans. We hypothesized that these cells contribute to blunted hypertrophic potential in old age.

View Article and Find Full Text PDF

Many of the molecular and cellular mechanisms discovered to regulate skeletal muscle hypertrophy were first identified using the rodent synergist ablation model. This model reveals the intrinsic capability and necessary pathways of skeletal muscle growth in response to mechanical overload (MOV). Reminiscent of the rapid cellular growth observed with cancer, we hypothesized that in response to MOV, skeletal muscle would undergo metabolic programming to sustain increased demands to support hypertrophy.

View Article and Find Full Text PDF

There is emerging evidence of a gut microbiome-skeletal muscle axis. The purpose of this study was to determine if an intact gut microbiome was necessary for skeletal muscle adaptation to exercise. Forty-two 4-month-old female C57BL/6J mice were randomly assigned to untreated (U) or antibiotic-treated (T) non-running controls (CU or CT, respectively) or progressive weighted wheel running (PoWeR, P) untreated (PU) or antibiotic-treated (PT) groups.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates urine microRNAs as potential biomarkers for biological responses to metals found in skeletal muscle over time.
  • Researchers tested various military-relevant metals in the gastrocnemius muscles of young male rats over periods ranging from one to twelve months.
  • The findings revealed specific urine microRNAs that may indicate exposure to these metals, suggesting a complex systemic response to the embedded metal exposure.
View Article and Find Full Text PDF

Satellite cells support adult skeletal muscle fiber adaptations to loading in numerous ways. The fusion of satellite cells, driven by cell-autonomous and/or extrinsic factors, contributes new myonuclei to muscle fibers, associates with load-induced hypertrophy, and may support focal membrane damage repair and long-term myonuclear transcriptional output. Recent studies have also revealed that satellite cells communicate within their niche to mediate muscle remodeling in response to resistance exercise, regulating the activity of numerous cell types through various mechanisms such as secretory signaling and cell-cell contact.

View Article and Find Full Text PDF