Publications by authors named "John J M Bergeron"

The acceleration of advances in proteomics has enabled integration with imaging at the EM and light microscopy levels, cryo-EM of protein structures, and artificial intelligence with proteins comprehensively and accurately resolved for cell structures at nanometer to subnanometer resolution. Proteomics continues to outpace experimentally based structural imaging, but their ultimate integration is a path toward the goal of a compendium of all proteins to understand mechanistically cell structure and function.

View Article and Find Full Text PDF

N-linked glycans are specifically attached to asparagine residues in a N-X-S/T motif of secretory pathway glycoproteins. N-glycosylation of newly synthesized glycoproteins directs their folding via the lectin chaperones calnexin and calreticulin that are associated with protein-folding enzymes and glycosidases of the endoplasmic reticulum (ER). Misfolded glycoproteins are retained in the ER by the same lectin chaperones.

View Article and Find Full Text PDF

GOLPH3 is the first example of a Golgi resident oncogene protein. It was independently identified in multiple screens; first in proteomic-based screens as a resident protein of the Golgi apparatus, and second as an oncogene product in a screen for genes amplified in cancer. A third screen uncovered the association of GOLPH3 with the Golgi resident phospholipid, phosphatidyl inositol 4 phosphate (PI4P) to maintain the characteristic ribbon structure of the Golgi apparatus favoring vesicular transport of secretory proteins.

View Article and Find Full Text PDF

Using whole-exome sequencing, we identified homozygous mutations in two unlinked genes, SEC23A c.1200G>C (p.M400I) and MAN1B1 c.

View Article and Find Full Text PDF

Epidermal growth factor (EGF) and insulin receptor tyrosine kinases (RTKs) exemplify how receptor location is coupled to signal transduction. Extracellular binding of ligands to these RTKs triggers their concentration into vesicles that bud off from the cell surface to generate intracellular signaling endosomes. On the exposed cytosolic surface of these endosomes, RTK autophosphorylation selects the downstream signaling proteins and lipids to effect growth factor and polypeptide hormone action.

View Article and Find Full Text PDF

Discovered in 1909 by Retzius and described mainly by morphology, the cytoplasmic droplet of sperm (renamed here the Hermes body) is conserved among all mammalian species but largely undefined at the molecular level. Tandem mass spectrometry of the isolated Hermes body from rat epididymal sperm characterized 1511 proteins, 43 of which were localized to the structure in situ by light microscopy and two by quantitative electron microscopy localization. Glucose transporter 3 (GLUT-3) glycolytic enzymes, selected membrane traffic and cytoskeletal proteins were highly abundant and concentrated in the Hermes body.

View Article and Find Full Text PDF

The molecular basis of changes in structure, cellular location, and function of the Golgi apparatus during male germ cell differentiation is unknown. To deduce cognate Golgi proteins, we isolated germ cell Golgi fractions, and 1318 proteins were characterized, with 20 localized in situ. The most abundant protein, GL54D of unknown function, is characterized as a germ cell-specific Golgi-localized type II integral membrane glycoprotein.

View Article and Find Full Text PDF

The ARF GTPase Activating Protein 1 (ARFGAP1) associates mainly with the cytosolic side of Golgi cisternal membranes where it participates in the formation of both COPI and clathrin-coated vesicles. In this study, we show that ARFGAP1 associates transiently with lipid droplets upon addition of oleate in cultured cells. Also, that addition of cyclic AMP shifts ARFGAP1 from lipid droplets to the Golgi apparatus and that overexpression and knockdown of ARFGAP1 affect lipid droplet formation.

View Article and Find Full Text PDF

Endosomes are isolated from rat liver using high-speed centrifugation through sucrose density gradients. They are distinguishable from Golgi elements, with which they coisolate, by their capacity to concentrate internalized protein ligands (viz., insulin and epidermal growth factor (EGF)) in receptor-bound intact form.

View Article and Find Full Text PDF

Despite more than six decades of successful Golgi research, the fundamental question as to how biosynthetic material is transported through the secretory pathway remains unanswered. New technologies such as live cell imaging and correlative microscopy have highlighted the plastic nature of the Golgi, one that is sensitive to perturbation yet highly efficient in regaining both structure and function. Single molecule-microscopy and super resolution-microscopy further adds to this picture.

View Article and Find Full Text PDF

Lipid droplets are discrete organelles present in most cell types and organisms including bacteria, yeast, plants, insects and animals. Long considered as passive storage deposits, recent cell biology, proteomic and lipidomic analysis show that lipid droplets are dynamic organelles involved in multiple cellular functions. They have a central function in lipid distribution to different membrane-bound organelles and serve not only as main reservoirs of neutral lipids such as triglycerides and cholesterol but in addition, contain structural proteins, proteins involved in lipid synthesis and transmembrane proteins.

View Article and Find Full Text PDF

Mass spectrometry has evolved and matured to a level where it is able to assess the complexity of the human proteome. We discuss some of the expected challenges ahead and promising strategies for success.

View Article and Find Full Text PDF

The mechanism, in molecular terms of protein quality control, specifically of how the cell recognizes and discriminates misfolded proteins, remains a challenge. In the secretory pathway the folding status of glycoproteins passing through the endoplasmic reticulum is marked by the composition of the N-glycan. The different glycoforms are recognized by specialized lectins.

View Article and Find Full Text PDF

Isolated subcellular fractions have been instrumental in elucidating cell function. The use of such fractions for the identification and biochemical characterization of subcellular organelles, combined with cell- free systems, has provided key insights into the function and machineries of organelles, including those involved in vesicle transport, quality control and protein sorting. Despite their obvious utility, popular cell biology has come to regard in vitro-based approaches as inferior to in vivo-based approaches.

View Article and Find Full Text PDF

Calnexin is an abundant integral membrane phosphoprotein of the endoplasmic reticulum (ER) of eukaryotic cells. The role of the luminal domain as an N-glycoprotein specific lectin has been well-established. Cytosolic C-terminal domain phosphorylation of calnexin has recently been elucidated in glycoprotein folding and quality control.

View Article and Find Full Text PDF

The study of glycosylation and glycosylation enzymes has been instrumental for the advancement of Cell Biology. After Neutra and Leblond showed that the Golgi apparatus is the main site of glycosylation, elucidation of oligosaccharide structures by Baenziger and Kornfeld and subsequent mapping of glycosylation enzymes followed. This enabled development of anin vitrotransport assay by Rothman and co-workers using glycosylation to monitor intra Golgi transport which, complemented by yeast genetics by Schekman and co-workers, provided much of the fundamental insights and key components of the secretory pathway that we today take for granted.

View Article and Find Full Text PDF

Calnexin is a type I integral membrane phosphoprotein resident of the endoplasmic reticulum. Its intraluminal domain has been deduced to function as a lectin chaperone coordinating the timing of folding of newly synthesized N-linked glycoproteins of the secretory pathway. Its C-terminal cytosolic oriented extension has an ERK1 phosphorylation site at Ser(563) affecting calnexin association with the translocon.

View Article and Find Full Text PDF

We performed a test sample study to try to identify errors leading to irreproducibility, including incompleteness of peptide sampling, in liquid chromatography-mass spectrometry-based proteomics. We distributed an equimolar test sample, comprising 20 highly purified recombinant human proteins, to 27 laboratories. Each protein contained one or more unique tryptic peptides of 1,250 Da to test for ion selection and sampling in the mass spectrometer.

View Article and Find Full Text PDF

In high-throughput proteomics, one promising approach presently being explored is the Accurate Mass and Time (AMT) tag approach, in which reversed-phase liquid chromatography coupled to high accuracy mass spectrometry provide measurements of both the masses and chromatographic retention times of tryptic peptides in complex mixtures. These measurements are matched to the mass and predicted retention times of peptides in library. There are two varieties of peptides in the library: peptides whose retention time predictions are derived from previous peptide identifications and therefore are of high precision, and peptides whose retention time predictions are derived from a sequence-based model and therefore have lower precision.

View Article and Find Full Text PDF

We have investigated the role for diacylglycerol (DAG) in membrane bud formation in the Golgi apparatus. Addition of propranolol to specifically inhibit phosphatidate phosphohydrolase (PAP), an enzyme responsible for converting phosphatidic acid into DAG, effectively prevents formation of membrane buds. The effect of PAP inhibition on Golgi membranes is rapid and occurs within 3 min.

View Article and Find Full Text PDF

We integrated five sets of proteomics data profiling the constituents of cerebrospinal fluid (CSF) derived from Huntington disease (HD)-affected and -unaffected individuals with genomics data profiling various human and mouse tissues, including the human HD brain. Based on an integrated analysis, we found that brain-specific proteins are 1.8 times more likely to be observed in CSF than in plasma, that brain-specific proteins tend to decrease in HD CSF compared with unaffected CSF, and that 81% of brain-specific proteins have quantitative changes concordant with transcriptional changes identified in different regions of HD brain.

View Article and Find Full Text PDF

In high-throughput mass spectrometry-based proteomics, it is necessary to employ separations to reduce sample complexity prior to mass spectrometric peptide identification. Interest has begun to focus on using information from separations to aid in peptide identification. One of the most common separations is reversed-phase liquid chromatography, in which peptides are separated on the basis of their chromatographic retention time.

View Article and Find Full Text PDF

Limited information is currently available on molecular events that underlie schizophrenia-like behaviors in animal models. Accordingly, we developed an organelle proteomic approach enabling the study of neurotransmission-related proteins in the prefrontal cortex (PFC) of postpubertal (postnatal day 60 (PD60)) neonatally ventral hippocampal (nVH) lesioned rats, an extensively used neurodevelopmental model of schizophrenia-like behaviors. The PFC was chosen because of its purported role in the etiology of the disease.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioncth5bf6b7e4jcgmlhact6rde1v6u2v8t): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once