Publications by authors named "John Inman-Bamber"

Background: The staphylococcal protein A (spa) locus of Staphylococcus aureus contains a complex repeat structure and is commonly used for single-locus sequence-based genotyping. The real-time PCR platform supports genotyping methods that are single step and closed tube and potentially can be carried out simultaneously with diagnosis. We describe here a method for genotyping S.

View Article and Find Full Text PDF

Background: Single nucleotide polymorphisms (SNPs) and genes that exhibit presence/absence variation have provided informative marker sets for bacterial and viral genotyping. Identification of marker sets optimised for these purposes has been based on maximal generalized discriminatory power as measured by Simpson's Index of Diversity, or on the ability to identify specific variants. Here we describe the Not-N algorithm, which is designed to identify small sets of genetic markers diagnostic for user-specified subsets of known genetic variants.

View Article and Find Full Text PDF

Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) has emerged as a major public health problem in Australia, as in many other parts of the world. High rates of CA-MRSA skin and soft tissue infection have been reported from Aboriginal communities. We used a single-nucleotide polymorphism (SNP) genotyping typing system based on the multilocus sequence type (MLST) database to investigate the epidemiology of CA-MRSA and methicillin-sensitive S.

View Article and Find Full Text PDF

One approach to microbial genotyping is to make use of sets of single-nucleotide polymorphisms (SNPs) in combination with binary markers. Here we report the modification and automation of a SNP-plus-binary-marker-based approach to the genotyping of Staphylococcus aureus and its application to 391 S. aureus isolates from southeast Queensland, Australia.

View Article and Find Full Text PDF

The aim of this study was to identify a set of genetic polymorphisms that efficiently divides methicillin-resistant Staphylococcus aureus (MRSA) strains into groups consistent with the population structure. The rationale was that such polymorphisms could underpin rapid real-time PCR or low-density array-based methods for monitoring MRSA dissemination in a cost-effective manner. Previously, the authors devised a computerized method for identifying sets of single nucleotide polymorphisms (SNPs) with high resolving power that are defined by multilocus sequence typing (MLST) databases, and also developed a real-time PCR method for interrogating a seven-member SNP set for genotyping S.

View Article and Find Full Text PDF