Assessing nutrient critical load exceedances requires complete and accurate atmospheric deposition budgets for reactive nitrogen (N). The exceedance is the total amount of N deposited to the ecosystem in excess of the critical load, which is the amount of N input below which harmful effects do not occur. Total deposition includes all forms of N (i.
View Article and Find Full Text PDFModeled leaf area index (LAI) in conjunction with satellite-derived LAI data streams may be used to support various regional and local scale air quality models for retrospective and future meteorological assessments. The Environmental Policy Integrated Climate (EPIC) model holds promise for providing LAI within a dynamic range for input into climate and air quality models, improving on current LAI distribution assumptions typical within atmospheric modeling. To assess the potential use of EPIC LAI, we first evaluated the Moderate Resolution Imaging Spectroradiometer (MODIS) LAI product collections 5 and 6 (i.
View Article and Find Full Text PDFVegetative leaf area is a critical input to models that simulate human and ecosystem exposure to atmospheric pollutants. Leaf area index (LAI) can be measured in the field or numerically simulated, but all contain some inherent uncertainty that is passed to the exposure assessments that use them. LAI estimates for minimally managed or natural forest stands can be particularly difficult to develop as a result of interspecies competition, age and spatial distribution.
View Article and Find Full Text PDFThe United States Harmful Algal Bloom and Hypoxia Research Control Act of 2014 identified the need for forecasting and monitoring harmful algal blooms (HAB) in lakes, reservoirs, and estuaries across the nation. Temperature is a driver in HAB forecasting models that affects both HAB growth rates and toxin production. Therefore, temperature data derived from the U.
View Article and Find Full Text PDF