Publications by authors named "John I Simpson"

The unipolar brush cell (UBC) is a glutamatergic granular layer interneuron that is predominantly located in the vestibulocerebellum and parts of the vermis. In rat and rabbit, we previously found using juxtacellular labeling combined with spontaneous activity recording that cells with highly regular spontaneous activity belong to the UBC category. Making use of this signature, we recorded from floccular UBCs in both anesthetized and awake rabbits while delivering visuo-vestibular stimulation by using sigmoidal rotation of the whole animal.

View Article and Find Full Text PDF

Background: We have extended our cerebellar cortical interneuron classification algorithm that uses statistics of spontaneous activity (Ruigrok et al., 2011) to include Purkinje cells. Purkinje cells were added because they do not always show a detectable complex spike, which is the accepted identification.

View Article and Find Full Text PDF

In addition to the well-known signals of retinal image slip, floccular complex spikes (CSs) also convey nonvisual signals. We recorded eye movement and CS activity from Purkinje cells in awake rabbits sinusoidally oscillated in the dark on a vestibular turntable. The stimulus frequency ranged from 0.

View Article and Find Full Text PDF

The contention of this commentary, focused on the vestibulocerebellum (particularly the flocculus), is that the great importance for our understanding of cerebellar organization in terms of climbing fiber zones, begun years ago by Voogd [1969, 2011] and Oscarsson [1969], needs to be matched by coming more to grips with the other fundamental geometrical organization of the cerebellum, the parallel fibers. The central issue is the selection of those parallel fiber signals to be transformed into Purkinje cell activity in the different zones. At present, in comparison to our knowledge of vestibulocerebellar climbing fiber inputs, the deficiencies in our knowledge of the zonal anatomy and physiology of vestibulocerebellar mossy fibers and granule cells are glaring.

View Article and Find Full Text PDF

Cerebellar cortical interneurons such as Golgi cells, basket cells, stellate cells, unipolar brush cells, and granule cells play an essential role in the operations of the cerebellum. However, detailed functional studies of the activity of these cells in both anesthetized and behaving animals have been hampered by problems in recognizing their physiological signatures. We have extracellularly recorded the spontaneous activity of vestibulocerebellar interneurons in ketamine/xylazine-anesthetized rats and subsequently labeled them with Neurobiotin using the juxtacellular technique.

View Article and Find Full Text PDF

Although cerebellar Purkinje cell complex spikes occur at low frequency (approximately 1/s), each complex spike is often associated with a high-frequency burst (approximately 500/s) of climbing fiber spikes. We examined the possibility that signals are present within the climbing fiber bursts. By intracellularly recording from depolarized, nonspiking Purkinje cells in anesthetized pigmented rabbits, climbing fiber burst patterns were investigated by determining the number of components in the induced compound EPSPs during spontaneous activity and during visual stimulation.

View Article and Find Full Text PDF

Whether ocular orientation to gravity is produced solely by linear acceleration in the horizontal plane of the head or depends on both horizontal and vertical components of the acceleration of gravity is controversial. Here, we compared orienting eye movements of rabbits during head tilt to those produced by centrifugation that generated centripetal acceleration along the naso-occipital (X-), bitemporal (Y-) and vertical (Z-) axes in a constant gravitational field. Sensitivities of ocular counter-pitch and vergence during pitch tilts were approximately 25 degrees /g and approximately 26 degrees /g, respectively, and of ocular counter-roll during roll tilts was approximately 20 degrees /g.

View Article and Find Full Text PDF

The electrophysiological properties of rat inferior olive (IO) neurons in the dorsal cap of Kooy (DCK) and the adjacent ventrolateral outgrowth (VLO) were compared with those of IO neurons in the principal olive (PO). Whereas DCK/VLO neurons are involved in eye movement control via their climbing fiber projection to the cerebellar flocculus, PO neurons control limb and digit movements via their climbing fiber projection to the lateral cerebellar hemisphere. In vitro patch recordings from DCK/VLO neurons revealed that low threshold calcium currents, Ih currents, and subthreshold oscillations are lacking in this subset of IO neurons.

View Article and Find Full Text PDF

We studied ocular asymmetries and orienting responses induced by angular rotation in rabbits with binocular video recordings. Slow phase velocities were significantly larger in the eye moving temporonasally than nasotemporally. The eyes also converged and pitched down during rotation, which increased and refocused binocular overlap in the visual fields.

View Article and Find Full Text PDF

Sinusoidal translation while rotating at constant angular velocity about a vertical axis (translation while rotating, TWR) produces centripetal and translational accelerations along the direction of translation and an orthogonal Coriolis acceleration due to the translation in the rotating frame. Thus, a Coriolis acceleration is produced along the bitemporal axis when oscillating along the naso-occipital axis, and along the naso-occipital axis when oscillating along the bitemporal axis. Together, these components generate an elliptically rotating acceleration vector that revolves around the head in the direction of rotation at the frequency of oscillation.

View Article and Find Full Text PDF