Publications by authors named "John Huguenard"

Unlabelled: Carbamazepine (CBZ) is a widely used antiepileptic drug effective in managing partial and generalized tonic-clonic seizures. Despite its established therapeutic efficacy, CBZ has been reported to worsen seizures in another form of epilepsy, generalized absence seizures, in both clinical and experimental settings. In this study, we focused on thalamic reticular (RT) neurons, which regulate thalamocortical network activity in absence seizures, to investigate whether CBZ alters their excitability, thereby contributing to the exacerbation of seizures.

View Article and Find Full Text PDF
Article Synopsis
  • Abnormal thalamocortical communication can result in neuropsychiatric disorders, with specific genetic variants in the CACNA1G gene linked to conditions like absence seizures, intellectual disability, and schizophrenia.
  • Researchers created a human assembloid model to study the effects of CACNA1G variants on thalamocortical pathways, discovering that a specific variant (M1531V) altered calcium currents in thalamic neurons and increased activity in both thalamic and cortical neurons.
  • Conversely, the loss of CACNA1G was found to disrupt thalamocortical connectivity, leading to heightened spontaneous activity in thalamic neurons and abnormal axon projections, highlighting the importance of multi-cellular models in understanding
View Article and Find Full Text PDF
Article Synopsis
  • Intrinsic sensory neurons are key components of the enteric nervous system (ENS), influencing gut motility and digestion through their specific properties and markers.
  • This study identifies two Type II classic cadherins as new markers for sensory neurons in the mouse colon, confirming their unique morphological and electrophysiological characteristics.
  • The research shows that activating these sensory neurons in the distal colon triggers colonic motor complexes, highlighting their essential role in digestive processes.
View Article and Find Full Text PDF

For the human brain to operate, populations of neurons across anatomical structures must coordinate their activity within milliseconds. To date, our understanding of such interactions has remained limited. We recorded directly from the hippocampus (HPC), posteromedial cortex (PMC), ventromedial/orbital prefrontal cortex (OFC), and the anterior nuclei of the thalamus (ANT) during two experiments of autobiographical memory processing that are known from decades of neuroimaging work to coactivate these regions.

View Article and Find Full Text PDF

Unlabelled: Medial prefrontal cortex (mPFC) and hippocampus are critical for memory retrieval, decision making and emotional regulation. While ventral CA1 (vCA1) shows direct and reciprocal connections with mPFC, dorsal CA1 (dCA1) forms indirect pathways to mPFC, notably via the thalamic Reuniens nucleus (Re). Neuroanatomical tracing has documented structural connectivity of this indirect pathway through Re however, its functional operation is largely unexplored.

View Article and Find Full Text PDF

Timothy syndrome (TS) is a severe, multisystem disorder characterized by autism, epilepsy, long-QT syndrome and other neuropsychiatric conditions. TS type 1 (TS1) is caused by a gain-of-function variant in the alternatively spliced and developmentally enriched CACNA1C exon 8A, as opposed to its counterpart exon 8. We previously uncovered several phenotypes in neurons derived from patients with TS1, including delayed channel inactivation, prolonged depolarization-induced calcium rise, impaired interneuron migration, activity-dependent dendrite retraction and an unanticipated persistent expression of exon 8A.

View Article and Find Full Text PDF

Aging is the key risk factor for cognitive decline, yet the molecular changes underlying brain aging remain poorly understood. Here, we conducted spatiotemporal RNA sequencing of the mouse brain, profiling 1,076 samples from 15 regions across 7 ages and 2 rejuvenation interventions. Our analysis identified a brain-wide gene signature of aging in glial cells, which exhibited spatially defined changes in magnitude.

View Article and Find Full Text PDF

Perception, thoughts, and actions are encoded by the coordinated activity of large neuronal populations spread over large areas. However, existing electrophysiological devices are limited by their scalability in capturing this cortex-wide activity. Here, we developed an electrode connector based on an ultra-conformable thin-film electrode array that self-assembles onto silicon microelectrode arrays enabling multithousand channel counts at a millimeter scale.

View Article and Find Full Text PDF

Absence seizures are characterized by brief periods of unconsciousness accompanied by lapses in motor function that can occur hundreds of times throughout the day. Outside of these frequent moments of unconsciousness, approximately a third of people living with the disorder experience treatment-resistant attention impairments. Convergent evidence suggests prefrontal cortex (PFC) dysfunction may underlie attention impairments in affected patients.

View Article and Find Full Text PDF

Hyperexcitability of brain circuits is a common feature of autism spectrum disorders (ASDs). Genetic deletion of a chromatin-binding protein, (), causes Smith-Magenis syndrome (SMS). SMS is a syndromic ASD associated with intellectual disability, autistic features, maladaptive behaviors, overt seizures, and abnormal electroencephalogram (EEG) patterns.

View Article and Find Full Text PDF

Self-organizing neural organoids represent a promising in vitro platform with which to model human development and disease. However, organoids lack the connectivity that exists in vivo, which limits maturation and makes integration with other circuits that control behaviour impossible. Here we show that human stem cell-derived cortical organoids transplanted into the somatosensory cortex of newborn athymic rats develop mature cell types that integrate into sensory and motivation-related circuits.

View Article and Find Full Text PDF

Activity-dependent myelination can fine-tune neural network dynamics. Conversely, aberrant neuronal activity, as occurs in disorders of recurrent seizures (epilepsy), could promote maladaptive myelination, contributing to pathogenesis. In this study, we tested the hypothesis that activity-dependent myelination resulting from absence seizures, which manifest as frequent behavioral arrests with generalized electroencephalography (EEG) spike-wave discharges, promote thalamocortical network hypersynchrony and contribute to epilepsy progression.

View Article and Find Full Text PDF

Here we report the pharmacologic blockade of voltage-gated sodium ion channels (Nas) by a synthetic saxitoxin derivative affixed to a photocleavable protecting group. We demonstrate that a functionalized saxitoxin (STX-eac) enables exquisite spatiotemporal control of Nas to interrupt action potentials in dissociated neurons and nerve fiber bundles. The photo-uncaged inhibitor (STX-ea) is a nanomolar potent, reversible binder of Nas.

View Article and Find Full Text PDF

Neurons have recently emerged as essential cellular constituents of the tumour microenvironment, and their activity has been shown to increase the growth of a diverse number of solid tumours. Although the role of neurons in tumour progression has previously been demonstrated, the importance of neuronal activity to tumour initiation is less clear-particularly in the setting of cancer predisposition syndromes. Fifteen per cent of individuals with the neurofibromatosis 1 (NF1) cancer predisposition syndrome (in which tumours arise in close association with nerves) develop low-grade neoplasms of the optic pathway (known as optic pathway gliomas (OPGs)) during early childhood, raising  the possibility that postnatal light-induced activity of the optic nerve drives tumour initiation.

View Article and Find Full Text PDF

Human stem-cell-derived models provide the promise of accelerating our understanding of brain disorders, but not knowing whether they possess the ability to mature beyond mid- to late-fetal stages potentially limits their utility. We leveraged a directed differentiation protocol to comprehensively assess maturation in vitro. Based on genome-wide analysis of the epigenetic clock and transcriptomics, as well as RNA editing, we observe that three-dimensional human cortical organoids reach postnatal stages between 250 and 300 days, a timeline paralleling in vivo development.

View Article and Find Full Text PDF

CLC-2 is a voltage-gated chloride channel that is widely expressed in mammalian tissues. In the central nervous system, CLC-2 appears in neurons and glia. Studies to define how this channel contributes to normal and pathophysiological function in the central nervous system raise questions that remain unresolved, in part due to the absence of precise pharmacological tools for modulating CLC-2 activity.

View Article and Find Full Text PDF

22q11.2 deletion syndrome (22q11DS) is a highly penetrant and common genetic cause of neuropsychiatric disease. Here we generated induced pluripotent stem cells from 15 individuals with 22q11DS and 15 control individuals and differentiated them into three-dimensional (3D) cerebral cortical organoids.

View Article and Find Full Text PDF

Absence seizures result from 3 to 5 Hz generalized thalamocortical oscillations that depend on highly regulated inhibitory neurotransmission in the thalamus. Efficient reuptake of the inhibitory neurotransmitter GABA is essential, and reuptake failure worsens human seizures. Here, we show that blocking GABA transporters (GATs) in acute rat brain slices containing key parts of the thalamocortical seizure network modulates epileptiform activity.

View Article and Find Full Text PDF

Absence epilepsy is a disorder of thalamocortical networks. Animal models have provided detailed information regarding the core cellular, synaptic, and network features that contribute to the electroencephalogram spike and wave discharge characteristic of typical absence epilepsy. Understanding of seizure networks and dynamics is a critical step toward improving treatments, yet competing conceptual models have evolved to explain seizure initiation and propagation.

View Article and Find Full Text PDF

Investigating human oligodendrogenesis and the interaction of oligodendrocytes with neurons and astrocytes would accelerate our understanding of the mechanisms underlying white matter disorders. However, this is challenging because of the limited accessibility of functional human brain tissue. Here, we developed a new differentiation method of human induced pluripotent stem cells to generate three-dimensional brain organoids that contain oligodendrocytes as well as neurons and astrocytes, called human oligodendrocyte spheroids.

View Article and Find Full Text PDF

The differentiation of pluripotent stem cells in three-dimensional cultures can recapitulate key aspects of brain development, but protocols are prone to variable results. Here we differentiated multiple human pluripotent stem cell lines for over 100 d using our previously developed approach to generate brain-region-specific organoids called cortical spheroids and, using several assays, found that spheroid generation was highly reliable and consistent. We anticipate the use of this approach for large-scale differentiation experiments and disease modeling.

View Article and Find Full Text PDF

During development, pyramidal neurons undergo dynamic regulation of AMPA receptor (AMPAR) subunit composition and density to help drive synaptic plasticity and maturation. These normal developmental changes in AMPARs are particularly vulnerable to risk factors for Autism Spectrum Disorders (ASDs), which include loss or mutations of synaptic proteins and environmental insults, such as dietary zinc deficiency. Here, we show how Shank2 and Shank3 mediate a zinc-dependent regulation of AMPAR function and subunit switch from GluA2-lacking to GluA2-containing AMPARs.

View Article and Find Full Text PDF