Publications by authors named "John Herr"

Background: perm crosomal LLPinding (SAS1B) protein is found in oocytes, which is necessary for sperm-oocyte interaction, and also in uterine and pancreatic cancers. Anti-SAS1B antibody-drug conjugates (ADCs) arrested growth in these cancers. However, SAS1B expression in cancers and normal tissues has not been characterized.

View Article and Find Full Text PDF

The lack of publicly available, large, and unbiased datasets is a key bottleneck for the application of machine learning (ML) methods in synthetic chemistry. Data from electronic laboratory notebooks (ELNs) could provide less biased, large datasets, but no such datasets have been made publicly available. The first real-world dataset from the ELNs of a large pharmaceutical company is disclosed and its relationship to high-throughput experimentation (HTE) datasets is described.

View Article and Find Full Text PDF

Machine learning potentials are an important tool for molecular simulation, but their development is held back by a shortage of high quality datasets to train them on. We describe the SPICE dataset, a new quantum chemistry dataset for training potentials relevant to simulating drug-like small molecules interacting with proteins. It contains over 1.

View Article and Find Full Text PDF

Molecular mechanics (MM) potentials have long been a workhorse of computational chemistry. Leveraging accuracy and speed, these functional forms find use in a wide variety of applications in biomolecular modeling and drug discovery, from rapid virtual screening to detailed free energy calculations. Traditionally, MM potentials have relied on human-curated, inflexible, and poorly extensible discrete chemical perception rules (atom types) for applying parameters to small molecules or biopolymers, making it difficult to optimize both types and parameters to fit quantum chemical or physical property data.

View Article and Find Full Text PDF

We define a vector quantity which corresponds to atomic species identity by compressing a set of physical properties with an autoencoder. This vector, referred to here as the elemental modes, provides many advantages in downstream machine learning tasks. Using the elemental modes directly as the feature vector, we trained a neural network to predict formation energies of elpasolites with improved accuracy over previous works on the same task.

View Article and Find Full Text PDF

Neural network model chemistries (NNMCs) promise to facilitate the accurate exploration of chemical space and simulation of large reactive systems. One important path to improving these models is to add layers of physical detail, especially long-range forces. At short range, however, these models are data driven and data limited.

View Article and Find Full Text PDF

Traditional force fields cannot model chemical reactivity, and suffer from low generality without re-fitting. Neural network potentials promise to address these problems, offering energies and forces with near accuracy at low cost. However a data-driven approach is naturally inefficient for long-range interatomic forces that have simple physical formulas.

View Article and Find Full Text PDF

Successful therapeutic options remain elusive for pancreatic cancer. The exquisite sensitivity and specificity of humoral and cellular immunity may provide therapeutic approaches if antigens specific for pancreatic cancer cells can be identified. Here we characterize SAS1B (ovastacin, , astacin-like), a cancer-oocyte antigen, as an attractive immunotoxin target expressed at the surface of human pancreatic cancer cells, with limited expression among normal tissues.

View Article and Find Full Text PDF

Testis-specific serine/threonine kinase 2 (TSSK2) is an important target for reversible male contraception. A high-throughput screen of ≈17 000 compounds using a mobility shift assay identified two potent series of inhibitors having a pyrrolopyrimidine or pyrimidine core. The pyrrolopyrimidine 10 (IC 22 nm; GSK2163632A) and the pyrimidine 17 (IC 31 nm; ALK inhibitor 1) are the most potent TSSK2 inhibitors in these series, which contain the first sub-100 nanomolar inhibitors of any TSSK isoform reported, except for the broad kinase inhibitor staurosporine.

View Article and Find Full Text PDF

The origin of the size-dependent Stokes shift in CsPbBr nanocrystals (NCs) is explained for the first time. Stokes shifts range from 82 to 20 meV for NCs with effective edge lengths varying from ∼4 to 13 nm. We show that the Stokes shift is intrinsic to the NC electronic structure and does not arise from extrinsic effects such as residual ensemble size distributions, impurities, or solvent-related effects.

View Article and Find Full Text PDF

Neural networks are being used to make new types of empirical chemical models as inexpensive as force fields, but with accuracy similar to the ab initio methods used to build them. In this work, we present a neural network that predicts the energies of molecules as a sum of intrinsic bond energies. The network learns the total energies of the popular GDB9 database to a competitive MAE of 0.

View Article and Find Full Text PDF

Fragmentation methods such as the many-body expansion (MBE) are a common strategy to model large systems by partitioning energies into a hierarchy of decreasingly significant contributions. The number of calculations required for chemical accuracy is still prohibitively expensive for the ab initio MBE to compete with force field approximations for applications beyond single-point energies. Alongside the MBE, empirical models of ab initio potential energy surfaces have improved, especially non-linear models based on neural networks (NNs) which can reproduce ab initio potential energy surfaces rapidly and accurately.

View Article and Find Full Text PDF

Spermatozoa must penetrate the outer investments of the oocyte, the cumulus oophorus and the zona pellucida (ZP), in order for fertilization to occur. This may require exposure of enzymes on the sperm's inner acrosomal membrane (IAM), one of which is matrix metalloproteinase (MMP) 2, to factors in oviductal fluid. Plasminogen is present in oviductal fluid and activates MMP2 in somatic tissues.

View Article and Find Full Text PDF

The testis-specific serine/threonine kinase 2 (TSSK2) has been proposed as a candidate male contraceptive target. Development of a selective inhibitor for this kinase first necessitates the production of highly purified, soluble human TSSK2 and its substrate, TSKS, with high yields and retention of biological activity for crystallography and compound screening. Strategies to produce full-length, soluble, biologically active hTSSK2 in baculovirus expression systems were tested and refined.

View Article and Find Full Text PDF

The metalloproteinase SAS1B [ovastacin, ASTL, astacin-like] was immunolocalized on the oolemma of ovulated human oocytes and in normal ovaries within the pool of growing oocytes where SAS1B protein was restricted to follicular stages spanning the primary-secondary follicle transition through ovulation. Gene-specific PCR and immunohistochemical studies revealed ASTL messages and SAS1B protein in both endometrioid [74%] and malignant mixed Mullerian tumors (MMMT) [87%] of the uterus. A MMMT-derived cell line, SNU539, expressed cell surface SAS1B that, after binding polyclonal antibodies, internalized into EEA1/LAMP1-positive early and late endosomes.

View Article and Find Full Text PDF

ESP1/SPESP1 is a testis-specific, postmeiotic gene expressed in round spermatids that encodes equatorial segment protein 1, an intra-acrosomal protein found in the acrosomal matrix and on the luminal surface of the inner and outer acrosomal membranes within the equatorial segment domain of mature spermatozoa. A comparison of testicular protein extracts with caput, corpus, and caudal epididymal sperm proteins revealed striking differences in the apparent masses of SPESP1 isoforms. The predominant isoforms of SPESP1 in the testis were 77 and 67 kDa, with 47-kDa forms present to a minor degree.

View Article and Find Full Text PDF

When laboratory host specificity tests on weed biological control agents produce ambiguous results or are suspected of producing false-positive findings, field cage or open field tests can be used to help determine the true ecological host range of the agent. The leaf beetle Diorhabda elongata (Brullé) from Crete, imported to the United States for the control of saltcedar (Tamarix spp., Tamaricaceae), showed a low but variable ovipositional response to nontarget Frankenia spp.

View Article and Find Full Text PDF

Background: Sperm Acrosomal SLLP1 Binding (SAS1B) protein (ovastacin) is an oolemmal binding partner for the intra-acrosomal sperm protein SLLP1.

Results: Immunohistochemical localization revealed that SAS1B translation is restricted among adult tissues to the ovary and oocytes, SAS1B appearing first in follicles at the primary-secondary transition. Quiescent oocytes within primordial follicles and primary follicles did not stain for SAS1B.

View Article and Find Full Text PDF

Proteins of unknown function comprise a significant fraction of sequenced genomes. Defining the roles of these proteins is vital to understanding cellular processes. Here, we describe a method to determine a protein function based on the identification of its natural ligand(s) by the crystallographic screening of the binding of a metabolite library, followed by a focused search in the metabolic space.

View Article and Find Full Text PDF

Purpose: Microdissection testicular sperm extraction markedly improves the sperm retrieval rates in men with nonobstructive azoospermia. However, localizing sperm foci can be time-consuming and it is not always successful. Fiberoptic confocal fluorescent microscopy offers the advantage of rapid in vivo detection of fluorescently labeled sperm in the seminiferous tubules.

View Article and Find Full Text PDF

Molecular mechanisms by which fertilization competent acrosome-reacted sperm bind to the oolemma remain uncharacterized. To identify oolemmal binding partner(s) for sperm acrosomal ligands, affinity panning was performed with mouse oocyte lysates using sperm acrosomal protein, SLLP1 as a target. An oocyte specific membrane metalloproteinase, SAS1B (Sperm Acrosomal SLLP1 Binding), was identified as a SLLP1 binding partner.

View Article and Find Full Text PDF

We have employed a proteomic approach to study the immune response to human sperm in an infertile female patient suffering from systemic lupus erythematosus (SLE). Human sperm antigenic extracts were resolved by means of two-dimensional electrophoresis and electroblotted onto nitrocellulose membranes. The membranes were incubated with serum from the SLE patient.

View Article and Find Full Text PDF
Article Synopsis
  • CABYR is a highly diverse calcium-binding protein crucial for sperm capacitation, with a potential ability to self-assemble and interact with anchoring proteins.
  • The study used advanced techniques like co-immunoprecipitation and mass spectrometry to uncover interactions between CABYR, AKAP3, and Ropporin, revealing a complex network of associations.
  • Results confirmed that CABYR interacts with AKAP3 and Ropporin, highlighting its role in the fibrous sheath of human sperm, showcasing the significance of CABYR in reproductive physiology.
View Article and Find Full Text PDF
Article Synopsis
  • CABYR is a calcium-binding protein essential for mouse sperm fibrous sheath (FS) development, with two coding regions (CR-A and CR-B) that are phosphorylated during sperm capacitation.
  • Research using various techniques has revealed that the main CABYR protein present in the FS is an 80 kDa variant derived solely from coding region A, which forms dimers and larger oligomers necessary for FS structure.
  • During spermiogenesis, CABYR accumulates in the cytoplasm of spermatids and eventually localizes to the FS, with its interactions differing depending on specific protein domains.
View Article and Find Full Text PDF