The complexity of information processing in the brain requires the development of technologies that can provide spatial and temporal resolution by means of dense electrode arrays paired with high-channel-count signal acquisition electronics. In this work, we present an ultra-low noise modular 512-channel neural recording circuit that is scalable to up to 4096 simultaneously recording channels. The neural readout application-specific integrated circuit (ASIC) uses a dense 8.
View Article and Find Full Text PDFElectrocorticography (ECoG) methodologically bridges basic neuroscience and understanding of human brains in health and disease. However, the localization of ECoG signals across the surface of the brain and the spatial distribution of their generating neuronal sources are poorly understood. To address this gap, we recorded from rat auditory cortex using customized μECoG, and simulated cortical surface electrical potentials with a full-scale, biophysically detailed cortical column model.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Measuring electrical potentials in the extracellular space of the brain is a popular technique because it can detect action potentials from putative individual neurons. Electrophysiology is undergoing a transformation where the number of recording channels, and thus number of neurons detected, is growing at a dramatic rate. This rapid scaling is paving the way for both new discoveries and commercial applications; however, as the number of channels increases there will be an increasing need to make these systems more power efficient.
View Article and Find Full Text PDFDespite ongoing advances in our understanding of local single-cellular and network-level activity of neuronal populations in the human brain, extraordinarily little is known about their "intermediate" microscale local circuit dynamics. Here, we utilized ultra-high-density microelectrode arrays and a rare opportunity to perform intracranial recordings across multiple cortical areas in human participants to discover three distinct classes of cortical activity that are not locked to ongoing natural brain rhythmic activity. The first included fast waveforms similar to extracellular single-unit activity.
View Article and Find Full Text PDFHigh-fidelity measurements of neural activity can enable advancements in our understanding of the neural basis of complex behaviors such as speech, audition, and language, and are critical for developing neural prostheses that address impairments to these abilities due to disease or injury. We develop a novel high resolution, thin-film micro-electrocorticography (micro-ECoG) array that enables high-fidelity surface measurements of neural activity from songbirds, a well-established animal model for studying speech behavior. With this device, we provide the first demonstration of sensory-evoked modulation of surface-recorded single unit responses.
View Article and Find Full Text PDFIEEE J Transl Eng Health Med
February 2019
Stroke patients are monitored hourly by physicians and nurses in an attempt to better understand their physical state. To quantify the patients' level of mobility, hourly movement (i.e.
View Article and Find Full Text PDFElectrocorticography (ECoG) is becoming more prevalent due to improvements in fabrication and recording technology as well as its ease of implantation compared to intracortical electrophysiology, larger cortical coverage, and potential advantages for use in long term chronic implantation. Given the flexibility in the design of ECoG grids, which is only increasing, it remains an open question what geometry of the electrodes is optimal for an application. Conductive polymer, PEDOT:PSS, coated microelectrodes have an advantage that they can be made very small without losing low impedance.
View Article and Find Full Text PDFElectrocorticography (ECoG), electrophysiological recording from the pial surface of the brain, is a critical measurement technique for clinical neurophysiology, basic neurophysiology studies, and demonstrates great promise for the development of neural prosthetic devices for assistive applications and the treatment of neurological disorders. Recent advances in device engineering are poised to enable orders of magnitude increase in the resolution of ECoG without comprised measurement quality. This enhancement in cortical sensing enables the observation of neural dynamics from the cortical surface at the micrometer scale.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2016
Open source electrophysiology (ephys) recording systems have several advantages over commercial systems such as customization and affordability enabling more researchers to conduct ephys experiments. Notable open source ephys systems include Open-Ephys, NeuroRighter and more recently Willow, all of which have high channel count (64+), scalability, and advanced software to develop on top of. However, little work has been done to build an open source ephys system that is clinic compatible, particularly in the operating room where acute human electrocorticography (ECoG) research is performed.
View Article and Find Full Text PDF