Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge.
View Article and Find Full Text PDFForests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system. Remote-sensing estimates to quantify carbon losses from global forests are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced and satellite-derived approaches to evaluate the scale of the global forest carbon potential outside agricultural and urban lands.
View Article and Find Full Text PDFUnderstanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records.
View Article and Find Full Text PDFis an introduced plant pathogen known to have caused significant declines in populations of several Australian native Myrtaceae species. However, limited research has focused on the impacts of the pathogen on plant communities in the aftermath of its invasion. This study investigated the relationship between disease impact level, plant species diversity, and functional richness in seedling communities in a wet sclerophyll forest in southeast Queensland.
View Article and Find Full Text PDFDetermining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies. Here, leveraging global tree databases, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
January 2023
Philos Trans R Soc Lond B Biol Sci
January 2023
Community involvement is critical for the success of many interventions designed to promote reforestation. To secure this involvement, it helps to recognize that communities are heterogenous both within and among themselves and possess diverse mixes of livelihood assets required to implement reforestation. We explore the relationship between livelihood assets and reforestation success and outline a conceptual model that we call the community capacity curve (CCC) applied to reforestation.
View Article and Find Full Text PDFStudies of plant water sources generally assume that xylem water integrates the isotopic composition (δH and δO) of water sources and does not fractionate during uptake or transport along the transpiration pathway. However, woody xerophytes, halophytes, and trees in mesic environments can show isotopic fractionation from source waters. Isotopic fractionation and variation in isotope composition can affect the interpretation of tree water sources, but most studies to date have been greenhouse experiments.
View Article and Find Full Text PDFAlternative methods for restoring tropical forests influence the ecological processes that shape recruitment of understory species. In turn, the traits of species recruited will influence the ecological processes the forests provide now and over the long term. We assess the phylogenetic and functional structure of seedlings beneath monoculture plantations, mixed-species plantations (both active restoration) and regenerating selectively logged native forests (passive restoration), considering traits of specific leaf area (SLA, including within-species variation), leaf nitrogen and phosphorus content, life-form, potential plant height, and dispersal type.
View Article and Find Full Text PDFShifting cultivation is a widespread land-use in the tropics that is considered a major threat to rainforest diversity and structure. In the Philippines, a country with rich biodiversity and high rates of species endemism, shifting cultivation, locally termed as kaingin, is a major land-use and has been for centuries. Despite the potential impact of shifting cultivation on forests and its importance to many people, it is not clear how biodiversity and forest structure recover after kaingin abandonment in the country, and how well these post-kaingin secondary forests can complement the old-growth forests.
View Article and Find Full Text PDFManaged tropical forests are a globally important carbon pool, but the effects of logging and thinning intensities on long-term biomass dynamics are poorly known. We investigated the demographic mechanisms of above-ground biomass recovery over 48 years in an Australian tropical forest following four silvicultural treatments: selective logging only as a control and selective logging followed by low-, medium- and high-intensity thinning. Initial biomass recovery rates following thinning were poor predictors of the long-term changes.
View Article and Find Full Text PDFWet-sclerophyll forests are unique ecosystems that can transition to dry-sclerophyll forests or to rainforests. Understanding of the dynamics of these forests for conservation is limited. We evaluated the long-term succession of wet-sclerophyll forest on World Heritage listed K'gari (Fraser Island)-the world's largest sand island.
View Article and Find Full Text PDFThe Sundarbans, in southern coastal Bangladesh, is the world's largest surviving mangrove habitat and the last stronghold of tiger adapted to living in a mangrove ecosystem. Using MaxEnt (maximum entropy modeling), current distribution data, land-use/land cover and bioclimatic variables, we modeled the likely future distribution of the globally endangered Bengal tiger (Panthera tigris tigris) in the Bangladesh Sundarbans. We used two climatic scenarios (i.
View Article and Find Full Text PDFCan morphological plant functional traits predict demographic rates (e.g., growth) within plant communities as diverse as tropical forests? This is one of the most important next-step questions in trait-based ecology and particularly for global reforestation efforts.
View Article and Find Full Text PDFThere is growing interest in multi-species tropical plantations but little information exists to guide their design and silviculture. The Rainforestation Farming system is the oldest tropical polyculture planting system in the Philippines and provides a unique opportunity to understand the underlying processes affecting tree performance within diverse plantings. Data collected from 85 plots distributed across the 18 mixed-species plantations in the Philippines was used to identify the factors influencing growth, probability of harvest, and death of trees in these complex plantings.
View Article and Find Full Text PDFIn the tropics, shifting cultivation has long been attributed to large scale forest degradation, and remains a major source of uncertainty in forest carbon accounting. In the Philippines, shifting cultivation, locally known as kaingin, is a major land-use in upland areas. We measured the distribution and recovery of aboveground biomass carbon along a fallow gradient in post-kaingin secondary forests in an upland area in the Philippines.
View Article and Find Full Text PDFA mixed species reforestation program known as the Rainforestation Farming system was undertaken in the Philippines to develop forms of farm forestry more suitable for smallholders than the simple monocultural plantations commonly used then. In this study, we describe the subsequent changes in stand structure and floristic composition of these plantations in order to learn from the experience and develop improved prescriptions for reforestation systems likely to be attractive to smallholders. We investigated stands aged from 6 to 11 years old on three successive occasions over a 6 year period.
View Article and Find Full Text PDFThe use of landholder typologies to aid the development, implementation, and monitoring natural-resource management (NRM) policies and programs has increased considerably during the past decade. This article explores the potential for using such typologies for a variety of NRM and rural and regional development applications. Review of typology use further suggests that there is potential to refine the way that typologies are developed and applied to better aid NRM, farming systems analyses, and rural and regional development.
View Article and Find Full Text PDF