Publications by authors named "John Heebner"

The advanced radiographic capability (ARC) laser system, part of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, is a short-pulse laser capability integrated into the NIF. The ARC is designed to provide adjustable pulse lengths of ∼1-38 in four independent beamlets, each with energies up to 1 kJ (depending on pulse duration). A detailed model of the ARC lasers has been developed that predicts the time- and space-resolved focal spots on target for each shot.

View Article and Find Full Text PDF

We report on the design, performance, and qualification of the injection laser system designed to deliver joule-level chirped pulse beamlets arranged in dual rectangular beam formats into two main laser amplifier beamlines of the National Ignition Facility. The system is designed to meet the requirements of the Advanced Radiographic Capability upgrade with features that deliver performance, adjustability, and long-term reliability.

View Article and Find Full Text PDF

Selective Laser Melting (SLM) of metal powder bed layers, whereby 3D metal objects can be printed from a digital file with unprecedented design flexibility, is spurring manufacturing innovations in medical, automotive, aerospace and textile industries. Because SLM is based on raster-scanning a laser beam over each layer, the process is relatively slow compared to most traditional manufacturing methods (hours to days), thus limiting wider spread use. Here we demonstrate the use of a large area, photolithographic method for 3D metal printing, using an optically-addressable light valve (OALV) as the photomask, to print entire layers of metal powder at once.

View Article and Find Full Text PDF

We present a method for designing optical fibers that support field-flattened, ring-like higher order modes, and show that the effective and group indices of its modes can be tuned by adjusting the widths of the guide's field-flattened layers or the average index of certain groups of layers. The approach provides a path to fibers that have simultaneously large mode areas and large separations between the propagation constants of their modes.

View Article and Find Full Text PDF

A rectangular-core (ribbon) fiber that guides and amplifies a single higher-order-mode (HOM) can potentially scale to much higher average powers than what is possible in traditional circular-core large-mode-area fibers. Such an amplifier would require mode-conversion at the input to enable interfacing with seed sources that typically output TEM(00) mode radiation and at the output to generate diffraction-limited radiation for end-user applications. We present the first simulation and experimental results of a mode conversion technique that uses two diffractive-optic-elements in conjugate Fourier planes to convert a diffraction limited TEM(00) mode to the HOM of a ribbon fiber.

View Article and Find Full Text PDF

We introduce a novel, chipscale device capable of single-shot ultrafast recording with picosecond-scale resolution over hundreds of picoseconds of record length. The device consists of two vertically-stacked III-V planar waveguides forming a Mach-Zehnder interferometer, and makes use of a transient, optically-induced phase difference to sample a temporal waveform injected into the waveguides. The pump beam is incident on the chip from above in the form of a diagonally-oriented stripe focused by a cylindrical lens.

View Article and Find Full Text PDF

Mode conversion from the fundamental to a higher-order mode in a rectangular-core optical fiber is accomplished by applying pressure with the edge of a flat plate. Modal analysis of the near and far field images of the fiber's transmitted beam determines the purity of the converted mode. Mode conversion reaching 75% of the targeted higher-order mode is achieved using this technique.

View Article and Find Full Text PDF

We have undertaken a measurement campaign to determine the repeatability of the prompt flashlamp-induced wavefront aberration on beamlines at the National Ignition Facility (NIF) and determine the extent to which shot-to-shot variations in this aberration may degrade the performance of a proposed adaptive optics system for the short-pulse Advanced Radiographic Capability beamline on NIF. In this paper we will describe the unique NIF configuration that was required to make this measurement, present the results of the experiment, and discuss the implications of these results for the adaptive optics system design.

View Article and Find Full Text PDF

We present a detailed theoretical investigation of cladding-pumped Raman fiber amplification in an unexplored parameter space of high conversion efficiency (> 60%) and high brightness enhancement (> 1000). Fibers with large clad-to-core diameter ratios can provide a promising means for Raman-based brightness enhancement of diode pump sources. Unfortunately, the diameter ratio cannot be extended indefinitely since the intensity generated in the core can greatly exceed that in the cladding long before the pump is fully depleted.

View Article and Find Full Text PDF

We demonstrate an ultrafast optical recording system based on a novel optical beam deflection technique. An optical pump temporarily creates an array of prisms that deflect an optical signal beam within a GaAs/AlGaAs planar waveguide. The fabricated device yielded, to our knowledge, the fastest sustained optical deflection reported to date and was used to create spatial representations of ultrafast temporal waveforms.

View Article and Find Full Text PDF

We demonstrate a cladding-pumped Raman fiber amplifier (CPRFA) whose brightness-enhancement factor depends on the cladding-to-core diameter ratio. The pump and the signal are coupled independently into different input arms of a pump-signal combiner, and the output is spliced to the Raman amplifier fiber. The CPRFA generates 20 microJ, 7 ns pulses at 1100 nm at a 2.

View Article and Find Full Text PDF

A spot-shadowing technique to mitigate damage growth in a high-energy laser is studied. Its goal is to minimize the energy loss and undesirable hot spots in intermediate planes of the laser. A nonlinear optimization algorithm solves for the complex fields required to mitigate damage growth in the National Ignition Facility amplifier chain.

View Article and Find Full Text PDF

We analyze the scalability of diffraction-limited fiber lasers considering thermal, non-linear, damage and pump coupling limits as well as fiber mode field diameter (MFD) restrictions. We derive new general relationships based upon practical considerations. Our analysis shows that if the fiber's MFD could be increased arbitrarily, 36 kW of power could be obtained with diffraction-limited quality from a fiber laser or amplifier.

View Article and Find Full Text PDF

We show that, when two channel waveguides are coupled by a sequence of periodically spaced microresonators, the group-velocity dispersion is low in the vicinity of the gap associated with the resonant frequency of the resonators. This low dispersion permits the excitation of a gap soliton with much lower energy than in a gap of similar width caused by Bragg reflection.

View Article and Find Full Text PDF

We show that the nonlinear phase shift produced by a ring resonator constructed from a given nonlinear optical material can be greater than the phase shift produced by a single pass through an infinite length of the same material when linear and nonlinear absorption are taken into consideration. The figure of merit (defined by the phase shift times the throughput) also improves for the ring resonator over that of the native nonlinear absorbing material. We finally show that these benefits of using the ring resonator as a nonlinear phase-shifting element can enhance the switching characteristics of a Mach-Zehnder interferometer.

View Article and Find Full Text PDF

We present a generalized formulation for the treatment of both bending (whispering gallery) loss and scattering loss due to edge roughness in microdisk resonators. The results are applicable to microrings and related geometries. For thin disks with radii greater than the bend-loss limit, we find that the finesse limited by the scattering losses induced by edge roughness is independent of radii.

View Article and Find Full Text PDF

We describe observations of various transverse instabilities that occur when two laser beams intersect in nonlinear optical liquids. Patterns that we observe include two types of conical emission and the generation of a linear array of spots. These results can be understood in terms of the physical processes of self-diffraction, two-beam-excited conical emission, and seeded modulational instability.

View Article and Find Full Text PDF

We have constructed and characterized several optical microring resonators with scale sizes of the order of 10 microm. These devices are intended to serve as building blocks for engineerable linear and nonlinear photonic media. Light is guided vertically by an epitaxially grown structure and transversely by deeply etched air-clad sidewalls.

View Article and Find Full Text PDF