Publications by authors named "John Harting"

Pharmacogenomics is central to precision medicine, informing medication safety and efficacy. Pharmacogenomic diplotyping of complex genes requires full-length DNA sequences and detection of structural rearrangements. We introduce StarPhase, a tool that leverages PacBio HiFi sequence data to diplotype 21 CPIC Level A pharmacogenes and provides detailed haplotypes and supporting visualizations for HLA-A, HLA-B, and CYP2D6.

View Article and Find Full Text PDF
Article Synopsis
  • A hexanucleotide GGGGCC repeat expansion is a leading genetic cause of ALS and FTD, but traditional detection methods like long-range PCR and Southern blot are often inaccurate and lack sensitivity.
  • Researchers used PacBio single-molecule sequencing to detect and size the repeat expansion without the need for amplification, overcoming the limitations of conventional sequencing.
  • The new method involves isolating high molecular weight genomic DNA from patient iPSCs, using CRISPR/Cas9 to target the repeat region, and preparing it for sequencing, making it suitable for analyzing repeats of various lengths across different cell types.
View Article and Find Full Text PDF

Comprehending the mechanism behind human diseases with an established heritable component represents the forefront of personalized medicine. Nevertheless, numerous medically important genes are inaccurately represented in short-read sequencing data analysis due to their complexity and repetitiveness or the so-called 'dark regions' of the human genome. The advent of PacBio as a long-read platform has provided new insights, yet HiFi whole-genome sequencing (WGS) cost remains frequently prohibitive.

View Article and Find Full Text PDF

Spinal muscular atrophy, a leading cause of early infant death, is caused by bi-allelic mutations of SMN1. Sequence analysis of SMN1 is challenging due to high sequence similarity with its paralog SMN2. Both genes have variable copy numbers across populations.

View Article and Find Full Text PDF

High-throughput sequencing provides sufficient means for determining genotypes of clinically important pharmacogenes that can be used to tailor medical decisions to individual patients. However, pharmacogene genotyping, also known as star-allele calling, is a challenging problem that requires accurate copy number calling, structural variation identification, variant calling, and phasing within each pharmacogene copy present in the sample. Here we introduce Aldy 4, a fast and efficient tool for genotyping pharmacogenes that uses combinatorial optimization for accurate star-allele calling across different sequencing technologies.

View Article and Find Full Text PDF

To determine the phase of NUDT15 sequence variants for more comprehensive star (*) allele diplotyping, we developed a novel long-read single-molecule real-time HiFi amplicon sequencing method. A 10.5 kb NUDT15 amplicon assay was validated using reference material positive controls and additional samples for specimen type and blinded accuracy assessment.

View Article and Find Full Text PDF
Article Synopsis
  • A study utilized No-Amp sequencing to analyze hexanucleotide expansions in the C9orf72 gene, a leading genetic cause of certain neurodegenerative diseases, by examining cerebellar tissue from 28 patients.
  • The research found a strong correlation between expansion sizes measured by No-Amp sequencing and traditional Southern blotting methods, indicating the effectiveness of this new sequencing technique.
  • Results revealed that smaller C9orf72 expansions were associated with increased survival rates and higher levels of specific transcripts and proteins, with a high GC content observed in the repeat expansions, emphasizing the significance of the expansion size in C9orf72-related disorders.
View Article and Find Full Text PDF

Myotonic dystrophy type 1 (DM1) is the most complex and variable trinucleotide repeat disorder caused by an unstable CTG repeat expansion, reaching up to 4000 CTG in the most severe cases. The genetic and clinical variability of DM1 depend on the sex and age of the transmitting parent, but also on the CTG repeat number, presence of repeat interruptions and/or on the degree of somatic instability. Currently, it is difficult to simultaneously and accurately determine these contributing factors in DM1 patients due to the limitations of gold standard methods used in molecular diagnostics and research laboratories.

View Article and Find Full Text PDF

Although NGS technologies fuel advances in high-throughput HLA genotyping methods for identification and classification of HLA genes to assist with precision medicine efforts in disease and transplantation, the efficiency of these methods are impeded by the absence of adequately-characterized high-frequency HLA allele reference sequence databases for the highly polymorphic HLA gene system. Here, we report on producing a comprehensive collection of full-length HLA allele sequences for eight classical HLA loci found in the Japanese population. We augmented the second-generation short read data generated by the Ion Torrent technology with long amplicon spanning consensus reads delivered by the third-generation SMRT sequencing method to create reference grade high-quality sequences of HLA class I and II gene alleles resolved at the genomic coding and non-coding level.

View Article and Find Full Text PDF

Burkholderia pseudomallei (Bp) is the causative agent of the infectious disease melioidosis. To investigate population diversity, recombination, and horizontal gene transfer in closely related Bp isolates, we performed whole-genome sequencing (WGS) on 106 clinical, animal, and environmental strains from a restricted Asian locale. Whole-genome phylogenies resolved multiple genomic clades of Bp, largely congruent with multilocus sequence typing (MLST).

View Article and Find Full Text PDF

Direct analysis of unassembled genomic data could greatly increase the power of short read DNA sequencing technologies and allow comparative genomics of organisms without a completed reference available. Here, we compare 174 chloroplasts by analyzing the taxanomic distribution of short kmers across genomes [1]. We then assemble de novo contigs centered on informative variation.

View Article and Find Full Text PDF

The advance of knowledge of the thalamic reticular nucleus and its connections has been reviewed and Max Cowan's contributions to this knowledge and to the methods used for studying the nucleus have been summarized. Whereas 50 years ago the nucleus was seen as a diffusely organized cell group closely related to the brain stem reticular formation, it can now be seen as a complex, tightly organized entity that has a significant inhibitory, modulatory action on the thalamic relay to cortex. The nucleus is under the control, on the one hand, of topographically organized afferents from the cerebral cortex and the thalamus, and on the other of more diffuse afferents from brain stem, basal forebrain, and other regions.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: