Spatial transcriptomics extends single-cell RNA sequencing (scRNA-seq) by providing spatial context for cell type identification and analysis. Imaging-based spatial technologies such as multiplexed error-robust fluorescence in situ hybridization (MERFISH) can achieve single-cell resolution, directly mapping single-cell identities to spatial positions. MERFISH produces a different data type than scRNA-seq, and a technical comparison between the two modalities is necessary to ascertain how to best integrate them.
View Article and Find Full Text PDFDNA barcoding of individual cells combined with next-generation sequencing enables high-throughput parallel analysis of biomolecules at the single-cell level. Encoding protein identity with DNA barcoding of specific antibody binders achieves sequencing-based protein quantitation by converting protein signals into DNA signals. Here, we describe how to prepare DNA-barcoded antibodies and connect protein identities to cellular identities using droplet microfluidics.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2020
Background: Most data on the clinical presentation, diagnostics, and outcomes of patients with COVID-19 have been presented as case series without comparison to patients with other acute respiratory illnesses.
Methods: We examined emergency department patients between February 3 and March 31, 2020 with an acute respiratory illness who were tested for SARS-CoV-2. We determined COVID-19 status by PCR and metagenomic next generation sequencing (mNGS).
Background: Emerging data on the clinical presentation, diagnostics, and outcomes of patients with COVID-19 have largely been presented as case series. Few studies have compared these clinical features and outcomes of COVID-19 to other acute respiratory illnesses.
Methods: We examined all patients presenting to an emergency department in San Francisco, California between February 3 and March 31, 2020 with an acute respiratory illness who were tested for SARS-CoV-2.
Proteins are the primary effectors of cellular function, including cellular metabolism, structural dynamics, and information processing. However, quantitative characterization of proteins at the single-cell level is challenging due to the tiny amount of protein available. Here, we present Abseq, a method to detect and quantitate proteins in single cells at ultrahigh throughput.
View Article and Find Full Text PDFGenetic interaction mapping is useful for understanding the molecular basis of cellular decision making, but elucidating interactions genome-wide is challenging due to the massive number of gene combinations that must be tested. Here, we demonstrate a simple approach to thoroughly map genetic interactions in bacteria using microfluidic-based single cell sequencing. Using single cell PCR in droplets, we link distinct genetic information into single DNA sequences that can be decoded by next generation sequencing.
View Article and Find Full Text PDFThe ability to accurately sequence long DNA molecules is important across biology, but existing sequencers are limited in read length and accuracy. Here, we demonstrate a method to leverage short-read sequencing to obtain long and accurate reads. Using droplet microfluidics, we isolate, amplify, fragment and barcode single DNA molecules in aqueous picolitre droplets, allowing the full-length molecules to be sequenced with multi-fold coverage using short-read sequencing.
View Article and Find Full Text PDFIn microbial communities, bacterial populations are commonly controlled using indiscriminate, broad range antibiotics. There are few ways to target specific strains effectively without disrupting the entire microbiome and local environment. Here, we use conjugation, a natural DNA horizontal transfer process among bacterial species, to deliver an engineered CRISPR interference (CRISPRi) system for targeting specific genes in recipient Escherichia coli cells.
View Article and Find Full Text PDFJuvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative neoplasm of childhood associated with a poor prognosis. Recently, massively parallel sequencing has identified recurrent mutations in the SKI domain of SETBP1 in a variety of myeloid disorders. These lesions were detected in nearly 10% of patients with JMML and have been characterized as secondary events.
View Article and Find Full Text PDFExpression of foreign pathways often results in suboptimal performance due to unintended factors such as introduction of toxic metabolites, cofactor imbalances or poor expression of pathway components. In this study we report a 120% improvement in the production of the isoprenoid-derived sesquiterpene, amorphadiene, produced by an engineered strain of Escherichia coli developed to express the native seven-gene mevalonate pathway from Saccharomyces cerevisiae (Martin et al. 2003).
View Article and Find Full Text PDF