Publications by authors named "John H Porter"

The advent of digital wildlife cameras has led to a dramatic increase in the use of camera traps for mammalian biodiversity surveys, ecological studies and occupancy analyses. For cryptic mammals such as mice and shrews, whose small sizes pose many challenges for unconstrained digital photography, use of camera traps remains relatively infrequent. Here we use a practical, low-cost small mammal camera platform (the "MouseCam") that is easy and inexpensive to fabricate and deploy and requires little maintenance beyond camera service.

View Article and Find Full Text PDF

Most information on seagrass carbon burial derives from point measurements, which are sometimes scaled by meadow area to estimate carbon stocks; however, sediment organic carbon (Corg) concentrations may vary with distance from the meadow edge, resulting in spatial gradients that affect the accuracy of stock estimates. We mapped sediment Corg concentrations throughout a large (6 km2) restored seagrass meadow to determine whether Corg distribution patterns exist at different spatial scales. The meadow originated from ≤1-acre plots seeded between 2001 and 2004, so we expected Corg to vary spatially according to the known meadow age at sample sites and with proximity to the meadow edge.

View Article and Find Full Text PDF

Developments in sensor design, electronics, computer technology and networking have converged to provide new ways of collecting environmental data at rates hitherto impossible to achieve. To translate this 'data deluge' into scientific knowledge requires comparable advances in our ability to integrate, process and analyze massive data sets. We review the experience of one large project in ingesting and analyzing sensor data from global lakes and provide a synopsis of innovative approaches being used to confront the information management and analytical challenges posed by massive volumes of data.

View Article and Find Full Text PDF

In order to observe and understand long-term and large-scale ecological changes, the US National Science Foundation initiated a Long-Term Ecological Research (LTER) program in 1980. Over the past 30 years, the US LTER program has achieved advances in ecological and social science research, and in the development of site-based research infrastructure. This paper attributed the success of the program to five characteristics, i.

View Article and Find Full Text PDF