Publications by authors named "John H Leamon"

Whole genome amplification (WGA) is a widely used molecular technique that is becoming increasingly necessary in genetic research on a range of sample types including individual cells, fossilized remains and entire ecosystems. Multiple methods of WGA have been developed, each with specific strengths and weaknesses, but with a common defect in that each method distorts the initial template DNA during the course of amplification. The type, extent, and circumstance of the bias vary with the WGA method and particulars of the template DNA.

View Article and Find Full Text PDF

The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip.

View Article and Find Full Text PDF

Limiting dilution PCR has become an increasingly useful technique for the detection and quantification of rare species in a population, but the limit of detection and accuracy of quantification are largely determined by the number of reactions that can be analyzed. Increased throughput may be achieved by reducing the reaction volume and increasing processivity. We have designed a high-throughput microfluidic chip that encapsulates PCR reagents in millions of picoliter droplets in a continuous oil flow.

View Article and Find Full Text PDF

The 454 Sequencer has dramatically increased the volume of sequencing conducted by the scientific community and expanded the range of problems that can be addressed by the direct readouts of DNA sequence. Key breakthroughs in the development of the 454 sequencing platform included higher throughput, simplified all in vitro sample preparation and the miniaturization of sequencing chemistries, enabling massively parallel sequencing reactions to be carried out at a scale and cost not previously possible. Together with other recently released next-generation technologies, the 454 platform has started to democratize sequencing, providing individual laboratories with access to capacities that rival those previously found only at a handful of large sequencing centers.

View Article and Find Full Text PDF

Background: Whole genome amplification is an increasingly common technique through which minute amounts of DNA can be multiplied to generate quantities suitable for genetic testing and analysis. Questions of amplification-induced error and template bias generated by these methods have previously been addressed through either small scale (SNPs) or large scale (CGH array, FISH) methodologies. Here we utilized whole genome sequencing to assess amplification-induced bias in both coding and non-coding regions of two bacterial genomes.

View Article and Find Full Text PDF

Three protocols in this issue highlight applications of emulsification procedures, which deliver high-throughput potential to the molecular biology laboratory, without the need for automation. These procedures have already generated interesting results and spurred the development of exciting new technologies, while requiring only readily available laboratory equipment.

View Article and Find Full Text PDF

The proliferation of large-scale DNA-sequencing projects in recent years has driven a search for alternative methods to reduce time and cost. Here we describe a scalable, highly parallel sequencing system with raw throughput significantly greater than that of state-of-the-art capillary electrophoresis instruments. The apparatus uses a novel fibre-optic slide of individual wells and is able to sequence 25 million bases, at 99% or better accuracy, in one four-hour run.

View Article and Find Full Text PDF

We demonstrate successful, simultaneous polymerase chain reaction (PCR) amplification of up to 300 000 discrete reactions in a novel platform, the PicoTiterPlate. In addition to elevated throughput, the PicoTiterPlate based amplifications (PTPCR) can be performed in extremely small volumes: individual reactions volumes are as low as 39.5 pL, with a total 15.

View Article and Find Full Text PDF

Structural genetic alterations in cancer often involve gene loss or gene amplification. With the advent of microarray approaches for the analysis of the genome, as exemplified by array-CGH (Comparative Genomic Hybridization), scanning for gene-dosage alterations is limited only by issues of DNA microarray density. However, samples of interest to the pathologist often comprise small clusters of just a few hundred cells, which do not provide sufficient DNA for array-CGH analysis.

View Article and Find Full Text PDF