The use of soft X-rays in electron probe microanalysis (EPMA) has gained renewed interest over the past decades due to the advent of new detector technologies. Because X-ray absorption is the dominant correction for soft X-rays, a reliable set of mass attenuation coefficients (MACs) is needed for accurate composition determination. Although several MAC tabulations cover the soft X-ray range, the accuracy of such tabulations below 1 keV is not firmly established.
View Article and Find Full Text PDFMicrosc Microanal
February 2022
Electron microprobe-based quantitative compositional measurement of first-row transition metals using their L$\alpha$ X-ray lines is hampered by, among other effects, self-absorption. This effect, which occurs when a broad X-ray line is located close to a broad absorption edge, is not accounted for by matrix corrections. To assess the error due to neglecting self-absorption, we calculate the L$\alpha$ X-ray intensity emitted from metallic Fe, Ni, Cu, and Zn targets, assuming a Lorentzian profile for the X-ray line and taking into account the energy dependence of the mass absorption coefficient near the absorption edge.
View Article and Find Full Text PDFAlthough calcareous anatomical structures have evolved in diverse animal groups, such structures have been unknown in insects. Here, we report the discovery of high-magnesium calcite [CaMg(CO)] armor overlaying the exoskeletons of major workers of the leaf-cutter ant Acromyrmex echinatior. Live-rearing and in vitro synthesis experiments indicate that the biomineral layer accumulates rapidly as ant workers mature, that the layer is continuously distributed, covering nearly the entire integument, and that the ant epicuticle catalyzes biomineral nucleation and growth.
View Article and Find Full Text PDFThe performance of multi-collector secondary ion mass spectrometry (MC-SIMS) for Mg isotope ratio analysis was evaluated using 17 olivine and 5 pyroxene reference materials (RMs). The Mg isotope composition of these RMs was accurately and precisely determined by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS), and these measured isotope ratios were used to evaluate SIMS instrumental mass bias as a function of the forsterite (Fo) content of olivine. The magnitude of the Mg isotope matrix effects were ~3‰ in δMg, and are a complex function of olivine Fo content, that ranged from Fo to Fo.
View Article and Find Full Text PDFSedimentological observations from the Paleoproterozoic Huronian Supergroup are suggested to mark the rise in atmospheric oxygen at that time, which is commonly known as the Great Oxidation Event (GOE) and typically coupled with a transition from mass-independent fractionation (MIF) to mass-dependent fractionation (MDF) of sulfur isotopes. An early in situ study of S three-isotopes across the Huronian Supergroup by Papineau et al. ( 2007 ) identified a weak MIF-MDF transition.
View Article and Find Full Text PDFTephra geochemistry and (40)Ar/(39)Ar geochronology are reported for the Waki-Mille area in the northwestern part of the Woranso-Mille paleoanthropological project area in the west central Afar region of Ethiopia. Previous studies documented dentognathic fossils that are morphologically intermediate between Australopithecus anamensis and Australopithecus afarensis and some that are attributed to Australopithecus afarensis. Additional dentognathic remains from the study area were assigned to the newly identified species Australopithecus deyiremeda.
View Article and Find Full Text PDFBioremediation strategies that depend on bacterial sulfate reduction for heavy metals remediation harness the reactivity of these metals with biogenic aqueous sulfide. Quantitative knowledge of the degree to which specific toxic metals are partitioned into various sulfide, oxide, or other phases is important for predicting the long-term mobility of these metals under environmental conditions. Here we report the quantitative partitioning into sedimentary biogenic sulfides of a suite of metals and metalloids associated with acid mine drainage contamination of a natural estuarine wetland for over a century.
View Article and Find Full Text PDFWe report the effects of two pseudowollastonite (beta-CaSiO(3)) substrates on the attachment, viability, proliferation and osteogenic differentiation of human mesenchymal stem cells (hMSCs), and provide detailed mechanistic links of surface texture, soluble factors and culture media to cell activities. Cell attachment and viability were lower for psWf (fine-grained, roughness 0.74 microm) than for psWc (coarse-grained, roughness 1.
View Article and Find Full Text PDF