Publications by authors named "John H Dubinion"

We examined whether central melanocortin 3 and 4 receptor (MC3/4R) blockade attenuates the blood pressure (BP) responses to chronic L-NAME or angiotensin II (Ang II) infusion in Sprague-Dawley rats implanted with telemetry transmitters, venous catheters, and intracerebroventricular cannula into the lateral ventricle. After 5 days of control measurements, L-NAME (10 μg/kg/min IV, groups 1 and 2) or Ang II (10 ng/kg/min IV, groups 3 and 4) were infused for 24 days, and starting on day 7 of L-NAME or Ang II infusion, the MC3/4R antagonist SHU-9119 (24 nmol/d, n=6/group; groups 1 and 3) or vehicle (saline 0.5 μL/h, n=6/group; groups 2 and 4) was infused intracerebroventricularly for 10 days.

View Article and Find Full Text PDF

Although signal transducer and activator of transcription 3 (Stat3) is a key second messenger by which leptin regulates appetite and body weight, its role in specific neuronal populations in metabolic regulation and in mediating the chronic effects of leptin on blood pressure is unknown. The current study tested the hypothesis that Stat3 signaling in proopiomelanocortin (POMC) neurons mediates the chronic effects of leptin on mean arterial pressure (MAP), as well as on glucose regulation, energy expenditure, and food intake. Stat3(flox/flox) mice were crossed with POMC-Cre mice to generate mice with Stat3 deletion specifically in POMC neurons (Stat3(flox/flox)/POMC-Cre).

View Article and Find Full Text PDF

Although the central nervous system melanocortin system is an important regulator of energy balance, the role of proopiomelanocortin (POMC) neurons in mediating the chronic effects of leptin on appetite, blood pressure, and glucose regulation is unknown. Using Cre/loxP technology we tested whether leptin receptor deletion in POMC neurons (LepR(flox/flox)/POMC-Cre mice) attenuates the chronic effects of leptin to increase mean arterial pressure (MAP), enhance glucose use and oxygen consumption, and reduce appetite. LepR(flox/flox)/POMC-Cre, wild-type, LepR(flox/flox), and POMC-Cre mice were instrumented for MAP and heart rate measurement by telemetry and venous catheters for infusions.

View Article and Find Full Text PDF

Objective: Obesity has been suggested to induce selective leptin resistance whereby leptin's anorexic effects are attenuated, whereas the effects to increase sympathetic nervous system activity and blood pressure remain intact. Most studies, however, have tested only the acute responses to leptin administration. This study tested whether feeding a high-fat diet causes resistance to the appetite and cardiovascular responses to chronic central leptin infusion.

View Article and Find Full Text PDF

Method: We examined the role of central nervous system (CNS) endogenous melanocortin 3/4 receptors (MC3/4R) activity in controlling cardiovascular and metabolic functions in Sprague Dawley rats fed a high-fat diet (n = 6) for 10 months compared with rats fed a standard chow (normal fat, n = 8) starting at 3 weeks of age.

Results: At 7 months of age, high-fat rats were heavier (473 +/- 3 vs. 424 +/- 7 g), consumed more calories with larger, less frequent meals and had reduced respiratory quotient (RQ) compared with normal-fat rats.

View Article and Find Full Text PDF

1. The aim of the present study was to determine whether inhibition of dipeptidyl peptidase IV (DPP IV) elevates arterial blood pressure and whether any such effect is dependent on genetic background, the sympathetic nervous system and Y(1) receptors. The rationale behind this study was that: (i) neuropeptide (NP) Y(1-36) and peptide YY(1-36) (PYY(1-36)) are endogenous Y(1) receptor agonists and are metabolised by DPP IV to NPY(3-36) and PYY(3-36), which are not Y(1) but rather selective Y(2) receptor agonists; (ii) Y(1) receptors mediate vasoconstriction, whereas Y(2) receptors have little effect on vascular tone; (iii) vaso-constrictor effect of the Y(1) receptor is enhanced in spontaneously hypertensive rats (SHR) compared with normotensive Wistar-Kyoto (WKY) rats; and (iv) NPY(1-36) is released from sympathetic nerve terminals.

View Article and Find Full Text PDF

The purpose of this study was to test the hypothesis that renal sympathetic nerves modulate angiotensin II-induced renal vasoconstriction in kidneys from genetically hypertensive rats via Y1 receptors activating the Gi pathway. In isolated, perfused kidneys from spontaneously hypertensive rats, the naturally occurring renal sympathetic cotransmitter neuropeptide Y at 6 nM enhanced angiotensin II (0.3 nM)-induced changes in perfusion pressure by 47 +/- 7 mm Hg, and this effect was inhibited by BIBP3226 [N2-(diphenylacetyl)-N-[(4-hydroxyphenyl)-methyl]-D-arginine amide)], a selective Y1 receptor antagonist (1 microM).

View Article and Find Full Text PDF

The Gi pathway augments renal vasoconstriction induced by angiotensin II in spontaneously hypertensive but not normotensive Wistar-Kyoto rats. Because the Gi-coupled pancreatic polypeptide (PP)-fold peptide receptors Y1 and Y2 are expressed in kidneys and are activated by endogenous PP-fold peptides, we tested the hypothesis that these receptors regulate angiotensin II-induced renal vasoconstriction in kidneys from hypertensive but not normotensive rats. A selective Y1-receptor agonist [(Leu31,Pro34)-neuropeptide Y; 6 to 10 nmol/L] greatly potentiated angiotensin II-induced changes in perfusion pressure in isolated, perfused kidneys from hypertensive but not normotensive rats.

View Article and Find Full Text PDF