Publications by authors named "John H Booske"

We demonstrate that applying electric field pulses to hepatocytes, in vitro, in the presence of enhanced green fluorescent protein (EGFP)-expressing adeno-associated virus (AAV8) vectors reduces the viral dosage required for a given transduction level by more than 50-fold, compared to hepatocytes exposed to AAV8-EGFP vectors without electric field pulse exposure. We conducted 48 experimental observations across 8 exposure conditions in standard well plates. The electric pulse exposures involved single 80-ms pulses with 375 V/cm field intensity.

View Article and Find Full Text PDF

Previous studies have shown greater fluorophore uptake during electroporation on the anode-facing side of the cell than on the cathode-facing side. Based on these observations, we hypothesized that hyperpolarizing a cell before electroporation would decrease the requisite pulsed electric field intensity for electroporation outcomes, thereby yielding a higher probability of reversible electroporation at lower electric field strengths and a higher probability of irreversible electroporation (IRE) at higher electric field strengths. In this study, we tested this hypothesis by hyperpolarizing HL-60 cells using ionomycin before electroporation.

View Article and Find Full Text PDF

We present a formulation for achieving stable high-concentration (up to 20 mg/ml) aqueous dispersions of carbon nanotubes (CNTs) with exceptionally high microwave-frequency (0.5-6 GHz) dielectric properties. The formulation involves functionalizing CVD-synthesized CNTs via sonication in nitric and sulfuric acid.

View Article and Find Full Text PDF

Background: The use of pulsed electric fields (PEFs) to irreversibly electroporate cells is a promising approach for destroying undesirable cells. This approach may gain enhanced applicability if the intensity of the PEF required to electrically disrupt cell membranes can be reduced via exposure to a molecular deliverable. This will be particularly impactful if that reduced PEF minimally influences cells that are not exposed to the deliverable.

View Article and Find Full Text PDF

The experimental results reported in this paper suggest that single-walled carbon nanotubes (SWCNTs) have the potential to enhance dielectric contrast between malignant and normal tissue for microwave detection of breast cancer and facilitate selective heating of malignant tissue for microwave hyperthermia treatment of breast cancer. In this study, we constructed tissue-mimicking materials with varying concentrations of SWCNTs and characterized their dielectric properties and heating response. At SWCNT concentrations of less than 0.

View Article and Find Full Text PDF

This work examines the role of 672 nm optical illumination on the diffusion and activation of B in Si as a function of various factors. The factors studied include length of anneal, maximum temperature of anneal, type of co-implanted and pre-amorphizing species and ambient oxygen concentration. The anneal conditions fell into one of three categories: (1) high-temperature (> 900 degrees C) spike and 10-second anneals; (2) low temperature (550 degrees C) 30-minute anneals; and (3) room-temperature long-term "anneals".

View Article and Find Full Text PDF

Experiments were conducted to compare the annealing of nano-porous aluminum oxide membranes by 2.45 GHz microwave radiation and by conventional (resistive element) furnace heating. The starting material was Al2O3 membranes that were 60 microm thick, 13 mm in diameter, and containing pores of approximately 200 nm diameter.

View Article and Find Full Text PDF

Microwave-induced thermoacoustic tomography (MI-TAT) is an imaging technique that exploits dielectric contrast at microwave frequencies while creating images with ultrasound resolution. We propose the use of microbubbles as a dielectric contrast agent for enhancing the sensitivity of MI-TAT for breast cancer detection. As an initial investigation of this concept, we experimentally studied the extent to which the microwave-induced thermoacoustic response of a dielectric target is modified by the presence of air-filled glass microbubbles.

View Article and Find Full Text PDF

The development of microwave breast cancer detection and treatment techniques has been driven by reports of substantial contrast in the dielectric properties of malignant and normal breast tissues. However, definitive knowledge of the dielectric properties of normal and diseased breast tissues at microwave frequencies has been limited by gaps and discrepancies across previously published studies. To address these issues, we conducted a large-scale study to experimentally determine the ultrawideband microwave dielectric properties of a variety of normal, malignant and benign breast tissues, measured from 0.

View Article and Find Full Text PDF

The efficacy of emerging microwave breast cancer detection and treatment techniques will depend, in part, on the dielectric properties of normal breast tissue. However, knowledge of these properties at microwave frequencies has been limited due to gaps and discrepancies in previously reported small-scale studies. To address these issues, we experimentally characterized the wideband microwave-frequency dielectric properties of a large number of normal breast tissue samples obtained from breast reduction surgeries at the University of Wisconsin and University of Calgary hospitals.

View Article and Find Full Text PDF

Gigahertz transverse electromagnetic (GTEM) transmission cells have been previously used to experimentally study exposure of biological cells to ultra-wideband (UWB), monopolar, electromagnetic pulses. Using finite-difference time-domain (FDTD) simulations we examine the time-dependent electric field waveforms and energy dose spatial distributions within a finite volume of biological cell culture medium during these experiments. The simulations show that when one or more flasks containing cell culture media are placed inside the GTEM cell, the uniform fields of the empty GTEM cell are significantly perturbed.

View Article and Find Full Text PDF

The development of ultrawideband (UWB) microwave diagnostic and therapeutic technologies, such as UWB microwave breast cancer detection and hyperthermia treatment, is facilitated by accurate knowledge of the temperature- and frequency-dependent dielectric properties of biological tissues. To this end, we characterize the temperature-dependent dielectric properties of a representative tissue type-animal liver-from 0.5 to 20 GHz.

View Article and Find Full Text PDF

We provide methods of computing multivalued solutions to the Euler-Poisson system and test them in the context of a klystron amplifier. An Eulerian formulation capable of computing multivalued solutions is derived from a kinetic description of the Euler-Poisson system and a moment closure. The system of the moment equations may be closed due to the special structure of the solution in phase space.

View Article and Find Full Text PDF

We present a view of the physics of phase distortion in a traveling wave tube (TWT) based on unique insights afforded by the MUSE models of a TWT [IEEE Trans. Plasma Sci. 30, 1063 (2002)]].

View Article and Find Full Text PDF