Perfluorinated long chain alkyl amides aggregate in liquid ammonia with increasing concentration which reflects micelle-type formation based on changes in (19)F NMR chemical shifts. The critical micelle concentrations (cmc) decrease with increasing chain length and give Kleven parameters A = 0.18 and B = 0.
View Article and Find Full Text PDFCopper(I) catalysed azide-alkyne cycloaddition reactions (CuAAC) occur smoothly in liquid ammonia (LNH(3)) at room temperature to give exclusively 1,4-substituted 1,2,3-triazoles with excellent yields (up to 99%). The CuAAC reactions in liquid ammonia require relatively small amounts of copper(I) catalyst (0.5 mole%) compared with that in conventional solvents.
View Article and Find Full Text PDFThe amination of aryl halides in liquid ammonia (LNH(3)) is catalyzed by a copper(I) salt/ascorbate system to yield primary aromatic amines in good to excellent yields. The low concentrations of catalyst required and the ease of product isolation suggest that this process has potential industrial applications. Commonly used ligands for analogous metal-catalyzed reactions are not effective.
View Article and Find Full Text PDFThe acidities of various carbon acids in liquid ammonia (LNH(3)) at room temperature were determined by NMR and rates of D-exchange. There is a reasonable linear correlation of the pK(a)s in LNH(3) with those in water and DMSO of slope 0.7 and 0.
View Article and Find Full Text PDFThe rates of aromatic nucleophilic substitution reactions in liquid ammonia are much faster than those in protic solvents indicating that liquid ammonia behaves like a typical dipolar aprotic solvent in its solvent effects on organic reactions. Nitrofluorobenzenes (NFBs) readily undergo solvolysis in liquid ammonia and 2-nitrofluorobenzene is about 30 times more reactive than the 4-substituted isomer. Oxygen nucleophiles, such as alkoxide and phenoxide ions, readily displace fluorine of 4-NFB in liquid ammonia to give the corresponding substitution product with little or no competing solvolysis product.
View Article and Find Full Text PDFThe kinetics and mechanism of the deprotection (detritylation) of 5'-O-(4,4'-dimethoxytrityl)-2'-deoxythymidine nucleoside catalysed by dichloroacetic acid to give a 4,4'-dimethoxytrityl carbocation have been studied in toluene, dichloromethane and acetonitrile. There is little or no effect of solvent polarity on the equilibrium and rate constants. Entropies of activation are highly negative approximately -105 J K(-1) mol(-1) and similarly show little variation with solvent.
View Article and Find Full Text PDFThe mechanism of the coupling step in polynucleotide synthesis using 5'-4,4'-dimethoxytritylthymidine-3'-beta-cyanoethyl-N,N-diisopropylphosphoramidite as the phosphitylating agent and catalysed by the salt of saccharin and N-methylimidazole in acetonitrile has been studied by (31)P NMR. Pre- and post-equilibria between the activator salt and released diisopropylamine have been examined by (1)H NMR and ITC, which show that the salt between saccharin and diisopropylamine will be present in acetonitrile. Activation of the phosphoramidite by the salt of saccharin and N-methylimidazole involves nucleophilic catalysis and the formation of a reactive saccharin adduct bonded through its carbonyl oxygen to phosphorus.
View Article and Find Full Text PDFContrary to a previous report, the sulfurisation of phosphorus(III) derivatives by 3-amino-1,2,4-dithiazole-5-thione (xanthane hydride) does not yield carbon disulfide and cyanamide as the additional reaction products. The reaction of xanthane hydride with triphenyl phosphine or trimethyl phosphite yields triphenyl phosphine sulfide or trimethyl thiophosphate, respectively, and thiocarbamoyl isothiocyanate which has been trapped with nucleophiles. The reaction pathway involves initial nucleophilic attack of the phosphorus at sulfur next to the thiocarbonyl group of xanthane hydride followed by decomposition of the phosphonium intermediate formed to products.
View Article and Find Full Text PDFKinetics studies are reported of the reactions of benzylidene benzylamine 4a, and of benzylidene allylamine 4b, with cyanide in aqueous buffers to give the corresponding [small alpha]-aminonitriles. The results allow the calculation of values of rate and equilibrium constants for reaction of the iminium ions formed from 4a and 4b with cyanide ions. These values are compared with those, obtained from the hydrolysis reactions, for reaction of the iminium ions with hydroxide ions and with water.
View Article and Find Full Text PDF